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Abstract Stochastic resonance (SR) is a phenomenon in which dynamic noise is effectively used to induce state tran-
sitions in a double-well potential system driven by subthreshold input signals. The noises are supplied to the system as
an additional force. Recently, a phenomenon called ‘“‘chaotic resonance’” (CR) has been spotlighted in the literature.
CR can be observed in chaotic systems that have multiple strange attractors and the ability to accept subthreshold
input signals; i.e., such CR systems do not require any external noise source, unlike traditional SR systems. In this
study, we employed Chua’s oscillator as a candidate CR system. The oscillator was driven by a sinusoidal voltage
source providing subthreshold input signals. In a certain range of input signal frequencies, we observed chaotic state
transitions between the two attractors, whereas no state transition between the attractors was observed in the remain-
ing frequency range. These findings indicated that chaotic fluctuations assisted the state transition. Furthermore, we
observed nonmonotonic CR characteristics (correlation value and signal-to-noise ratio between the input signal and

the output signal) that corresponded to typical nonmonotonic SR curves.
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1. Introduction

Noises in electronic circuits, particularly those in analog
circuits, have adverse effects on the desired circuit opera-
tions [1]. Therefore, extensive research has been conducted
to devise electronic circuits that reduce these noises. On
the other hand, many biological systems process informa-
tion with the help of external or thermal noises, for example,
see [2-10]. To reproduce this behavior, circuits that exploit
noises efficiently, instead of removing them, have been pro-
posed [11-17].

Among various strategies of exploiting noises in nature,
stochastic resonance (SR) is believed to be a fundamental
phenomenon in which external noise is effectively used. In-
deed, biological systems effectively utilize the noise gener-
ated by their own dynamics to invoke SR, and this mecha-
nism has previously been investigated [18, 19]. Among such
SR driven by self-generated noises, chaotic resonance (CR)
has been spotlighted in the literature [20-24]. CR is a phe-
nomenon in which internal fluctuations are effectively used
to trigger state transitions; therefore, CR does not require ex-
ternal noise. Furthermore, CR may play an important role in
cerebellar learning [25], and thus, one can postulate that bio-
logical systems tend to use external and internal fluctuations.

In this study, we attempted to determine simpler CR sys-
tems by focusing on the chaotic systems that produce in-
ternal fluctuations. We here assumed that our CR could be
observed in chaotic systems that satisfy the following condi-
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tions: (i) the system must contain two strange attractors that
corresponded to the system states and (ii) the system’s state
transition must be caused by external input signals. Condi-
tion (i) is necessary for mimicking the two states of conven-
tional SR in double-well (bistable) systems. Regarding con-
dition (ii), we considered that under certain parameter con-
ditions with a subthreshold input signal, the state transitions
would not be induced (the state would be trapped in one of
the attractors), and the state transition would occur when the
amount of chaotic fluctuations generated internally exceeds
a certain threshold (the state would pass through the attrac-
tors). Duffing, Lorenz, and double-scroll systems are a few
of such chaotic systems. Lorenz and double-scroll systems
are autonomous and can cause chaotic state transitions with-
out an input signal. Among the many double-scroll chaotic
systems, Chua’s oscillator [26] is known to be suitable for
choosing a parameter set that satisfies the above-mentioned
conditions (i and ii) that must be met for state trapping and
transition. Hence, we employed Chua’s oscillator as a candi-
date CR system.

To elucidate the relationship between the degree of CR and
the strength of the fluctuation generated by Chua’s oscillator,
we evaluate the correlation value and SNR between the input
signal and the output signal, as in evaluations of conventional
SR systems, and show that the characteristics of the corre-
lation value and SNR may correspond to typical SR curves.
Furthermore, since arrayed threshold units are known to en-
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Fig. 1 (a) Chua’s oscillator unit (CU), and (b) Summing network of Chua’s oscillators (CU) with common input and summed

output signals

hance the correlation value for a wide range of noise intensity
levels in SR [19,27], we evaluate a network that consists of ar-
rayed Chua’s oscillators, and show that the network enhances
the correlation values.

This paper is organized as follows. Section 2 describes the
simulation methods and setups. The results for single and
arrayed Chua’s oscillators are presented in Sect. 3. Section 4
is devoted to the summary and discussion.

2. Methods

In this research, we applied a sinusoidal voltage as an in-
put signal to Chua’s oscillator, which consists of five elec-
trical elements (a resistor, two capacitors, an inductor, and a
nonlinear resistance), as shown in Fig. 1(a). Despite its sim-
ple structure, this oscillator exhibits a wide variety of chaotic
phenomena and bifurcations, and has two attractors. We here
define the system’s state as the trapped region among the at-
tractors. The dynamics of the forced Chua’s oscillator can be
written as follows:

i = aly—z-—yg)
) = clr—y+2)
Z2 = —cgy+ Asin(27ft)

where A sin(27 ft) represents the input signal (A: amplitude,
f: frequency), c; 2,3 represents the system parameters, and
g(z) represents the normalized nonlinear resistance, which is
given by

1

g(z) = moz + §(m1 —my)|x + Bp|
1

—|—§(m0 —my )|z — Bp]

where mg 1 and Bp represent the resistance parameters.

To induce the state transitions between the attractors, we
set the Chua’s oscillator parameters to values such that no
state transition occurs without the input signal, and then set
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the input signal amplitude (A) to a subthreshold value near
the threshold value. Then, we varied the input signal fre-
quency (f) as the Chua’s oscillator parameter. Under these
conditions, the state transitions can be presumed to have been
assisted by not the input signal amplitude but the chaotic fluc-
tuations generated by Chua’s oscillator.

Furthermore, we considered a network consisting of an ar-
ray of Chua’s oscillators and investigated whether using the
network would enhance the correlation value and SNR in CR.
A common subthreshold input signal was supplied to an ar-
ray of Chua’s oscillators. Then, output signals of the array of
Chua’s oscillators (x7 ...z ) were summed, as illustrated in
Fig. 1(b).

3. Results

3.1 Attractor trapping and transition with input signal

We set the parameters of Chua’s oscillator as c; 15.6,
Cy = 1, C3 = 33, BP = 1, moy = 78/7, and my = 75/7
The input signal amplitude (A) was fixed at 2.7, which was
insufficient to cause state transitions between the two attrac-
tors. Subsequently, we varied the frequency (f) of the input
signal, considering it to be the system parameter. Figure 2
shows plots of the simulation results for a single Chua’s oscil-
lator with f = 0.01 (left to middle in Fig. 2) and 0.15 (right).
Figures 2(a), 2(b), and 2(c) show the trajectories of the sys-
tem variables (x and y). The time course of the Chua’s os-
cillator variable for the output signal (x) and the input signal
(Asin(27 ft)) are plotted in Figs. 2(d), 2(e), and 2(f). When
f = 0.01, = does not follow the input signal and the state
is trapped in the left or right attractor depending on the ini-
tial state value, as shown in Figs. 2(a), 2(b), 2(d), and 2(e). In
contrast, when f = 0.15, the state chaotically transits through
the two attractors, as shown in Figs. 2(c) and 2(f).

Figures 2(g), 2(h), and 2(i) show plots of the time course
of correlation values between the input signal and  given by

correlation value =
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Fig.2 Simulation results of Chua’s oscillator with subthreshold input signal (A sin(27 ft)): Phase-plane (a, b, ¢), Time-series
of x and input signal (d, e, f), Correlation value (g, h, i), and PSD (j, k, 1) (f = 0.01 Hz (a, b, d, e, g, h, j, k), f = 0.15 Hz (c,
f,1,1), (c1 = 15.6,co = 1,c3 =33, Bp =1, mg = —8/7, my = —5/7,and A = 2.7))

(Asin(27 ft) - z(t)) — (Asin(27 ft)){(x(t))
Asin(2r 072 — (Asinr D)2/ (2(0)7) — (2(0)?

1 t
X(t)dt
t—T

where we set 7" at 10000. In Fig. 2(f), we can observe that
x follows the input signal stochastically. When f = 0.01,
correlation values are very low, as shown in Figs. 2(g) and
2(h). On the other hand, when f = 0.15, the correlation
value increased, and the average is around 0.25, as shown in
Fig. 2(i).
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Figures 2(j), 2(k), and 2(1) show plots of the power spec-
trum density (PSD) X (f) obtained by the Fourier transform
of z(t) and then raising it to the second power as follows.

+oo ) 2
/ x(t)e 72 It dt
—00

On this occasion, we sampled x(¢) with the same number
of samples and the same time steps among the simulation
datasets. Therefore, one may compare the PSD values ab-
solutely among the datasets.
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Fig. 3 Bifurcation diagram of x in Chua’s oscillator

The SNR values at the driven frequency f, are given by

SNR = 10log;, ( g((?;)))

where S and B represent the output PSD of the peak and the
background level, respectively. The calculated SNR for Fig-
ures 2(j), 2(k), and 2(1) were 48 [dB], 47 [dB], and 52 [dB],
respectively, and were not so different among the three cases.
On the other hand, absolute PSD values in the low-frequency
range (lower than f() were significantly different between the
cases shown in Figs. 2(j) and 2(k), and Fig. 2(1), which im-
plies that the increased low-frequency background noise in-
duced the chaotic state transition. The quantitative evaluation
is presented in the following section.

3.2 Evaluation of degree of chaotic resonance

In the previous subsection, Fig. 2 showed the different behav-
iors of the the Chua’s oscillator upon changing the two input
signal frequencies (0.01 and 0.15 Hz). Here we sweep the
input signal frequency, and show the bifurcation diagram and
correlation values in terms of the frequency.

To obtain a bifurcation diagram in Chua’s oscillator, we
swept the input frequency from 0.01 Hz to 10 Hz in steps
of 0.01. In Fig. 3, the z-axis is the input signal frequency
and the y-axis represents the set of x values over the simu-
lation time. Figure 3 shows that chaotic transitions occur in
the range from 0.02 Hz to 1.2 Hz. In the range from 0.6 Hz
to 0.9 Hz, x was trapped to the power supply voltage. We
further investigated the relationship between the input signal
frequency and the correlation value, as shown in Fig. 4. From
Figs. 3 and 4, we could not find any SR-like relationship be-
tween the input signal frequency and z, or between the input
signal frequency and the correlation value. In Chua’s oscilla-
tor, noise power is determined by the frequency, and then, the
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Fig. 4 Correlation value versus the input frequency for
Chua’s oscillator

degree of transitions is changed. Hence we investigated the
relationship between the degree of resonance in CR and the
strength of the fluctuation generated by Chua’s oscillator.

In SR, since there is a noise source outside the SR system,
the noise density can be controlled and be simply defined as
the noise quantity. In contrast, in CR, isolating chaotic fluctu-
ations produced in the system is difficult. We could obtain the
chaotic fluctuation power from the output signal combined
with an input signal and chaotic fluctuations. The area under
the PSD of the output signal is equal to the total signal power
with chaotic fluctuations. The proportion of the input signal
power is low in the total signal power and ignorable when we
calculate chaotic fluctuations power. Therefore, for the sake
of simplicity, we considered the output signal power as the
noise quantity. The signal power was calculated by integrat-
ing the PSD X (f) from 0.01 Hz to 50 Hz as follows.

50

X(f)df

0.01

signal power =

Figure 5 shows the correlation value versus the signal power.
The correlation value first increases with the noise power,
peaks, and then finally decreases. We could identify which
characteristics of CR correspond to typical SR curves, as
shown in Fig. 5. Optimized internal fluctuations generated
by the chaotic system were found to enhance the correlation
value in the CR system.

Figure 6 shows the signal intensity dependence of CR char-
acteristics in Chua’s oscillator where the x-axis represents the
signal power, the y-axis the signal input amplifier A, and the
z-axis the correlation value. The input amplitude (A) was
changed from 0.3 to 3.0 in steps of 0.3. When A is small, the
correlation value is low because no transition occurs. When
transitions occur, the characteristics between the signal power
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Fig. 6 Signal intensity dependence on CR characteristics of
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versus the correlation value may have a peak, as expected
from Fig. 5. When A is 2.7, the correlation value peak be-
comes maximum. Therefore, here, we can conclude that the
optimized signal power (noise power) assists frequent transi-
tions.

Next, we calculated the SNR of Chua’s oscillator. For this
purpose, the output signal = was converted to a binary signal
(1 or —1) by applying a threshold function. When the state
was trapped in either attractor, the SNR could not be calcu-
lated. We could obtain the SNR when the state transited be-
tween the two attractors. Furthermore, when z followed the
input signal closely, the SNR increased, and when x weakly
followed the input signal, the SNR decreased, as shown in
Fig. 7. We determined which SNR characteristics resembled
those in the case of typical SR curves by using Fig. 5. These
characteristics quantitatively indicated that chaotic fluctua-
tions in the system induced state transitions for a given sub-
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Fig. 7 SNR versus signal power for Chua’s oscillator

threshold input signal, in the same way as SR.

3.3 Arrayed Chua’s oscillators’ network

CR achieved with Chua’s oscillator was discussed in the pre-
vious sections. We consider an array of Chua’s oscillators
in this subsection [Fig. 1(b)]. In the network, we computed
the correlation value and SNR between the input signal and
Tmean, Which is the total output averaged by the number of
Chua’s oscillators (/V). The network’s signal power was cal-
culated by determining Zpean and then by integrating this
PSD from 0.01 Hz to 50 Hz.

Figure 8 shows the correlation value versus the signal
power characteristics for numbers of Chua’s oscillators (V)
of 1, 2, and 10. When the output signals (x7 ...zxN) were
summed to compute the signal power, chaotic fluctuations
overlapping the output signals were found to be canceled.
Therefore, when NN increased, the maximum correlation
value moved to a lower signal-power area. Although Fig. 8
shows apparently different results for arrayed excitable units
for SR, we expect that increasing the number of arrayed oscil-
lators would enhance the correlation value. This is because,
by increasing the number of oscillators, the distribution of the
low correlation value moves to a high-correlation-value area
and the signal power decreases, as previously noted.

Figure 9 shows the SNR versus the signal power charac-
teristics for numbers of oscillators (/V) of 1, 2, and 10. To
calculate the SNR in this case, output signals were separately
digitized (1 or —1) by applying a threshold function and the
binary signals were summed. The SNR peak also moved to
the lower signal-power area, and the SNR decreased in the
high noise-power area (N = 1,2,10). From Fig. 9, we can
expect that increasing the number of Chua’s oscillators will
enhance the correlation value, as in the case shown in Fig. 8.
From these results, we conclude that using the network en-
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hances the correlation value and SNR in a CR system.

4. Summary and Discussion

In this study, we observed CR in Chua’s oscillator with
a subthreshold input signal. We swept the frequency of the
input signal in order to observe the oscillator operations. In
certain ranges, the Chua’s oscillator output signal followed
the input signal, and in others, it did not. We investigated the
relationship between the degree of resonance and the chaotic
fluctuations.

In SR, the external noise density is controlled directly as
the noise quantity. For example, in [3], external noise was
presented to a crayfish and controlled directly. On the other
hand, defining internal noise is difficult because it is cumber-
some to extract and control internal noise intensity directly in
SR and CR systems. In [18, 19], the coupling strength was
defined as the noise quantity. Hence, in this study, we defined
the output signal power including internal fluctuations as the
noise quantity.

We found the characteristics of the correlation value and
SNR, in the case of CR curves, to be similar to typical SR
curves. Furthermore, we evaluated the correlation value and
SNR for a network consisting of an array of Chua’s oscillators
having a common input signal and z,e.,. When the number
of arrayed Chua’s oscillators was increased, the distribution
of the SNR and correlation value moved to a region of higher
values and the signal power decreased. From these results, we
found that using the network enhanced the correlation value
and SNR in a CR system. We also found that internal chaotic
fluctuations or noise can induce state transitions or help detect
a subthreshold input signal, similar to typical SR systems.

Finally we discuss some electrical engineering applications

236

10001 002 005 004 0.05 0.06 007 008 009 0.1

signal power [arb. unit]

Fig. 9 SNR versus signal power for arrayed Chua’s oscillator
network (N = 1,2,10)

that use CR. CR in a bistable system, such as the Chua’s oscil-
lator that was used in this study, can be used to implement dy-
namical memory. When the input signal is sufficiently large,
the memory operates normally. In the scenario of continu-
ous power-voltage reduction, conventional memories such as
SRAM cannot operate in the circuit state correctly, since the
input signal has a subthreshold amplitude. However, in the
same situation, dynamical memory can overcome this prob-
lem and memorize data stochastically by utilizing the chaotic
fluctuation effectively, as suggested by the results. There-
fore, we can assume that a dynamical memory with CR can
achieve low power consumption. Furthermore, CR that uses
the chaotic fluctuation examined in this study can utilize an-
other type of noise, for example, quantum noise, which is
unavoidable noise that occurs in nanoscale devices. Hence,
dynamical memories with CR are a good candidate for use
in low-voltage memory, nanoscale memory, and other such
devices.
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