
A Study on Acceleration

Methods of Data Center

Applications with

Reconfigurable Hardware

Eric Shun Fukuda

A thesis presented for the degree of

Doctor of Engineering

Graduate School of Information Science and Technology

Hokkaido University

Japan

March, 2015

A Study on Acceleration Methods of Data

Center Applications with Reconfigurable

Hardware

Eric Shun Fukuda

Abstract

This study discusses the use of reconfigurable hardware, especially in data

centers. Reconfigurable hardware is a promising technology for overcoming

the difficulties face by general-purpose processors, which have been central

to computer science for decades. Enabling reconfigurable technology to be

used by a variety of people, including software developers, will have a great

impact on pushing current computing to a new era. The recent enthusiasm

for cloud computing indicates the increasing significance of data centers, and

improving the performance of data centers in computation speed and energy

efficiency has a great impact on the entire computer industry.

Although computers have progressed enormously since their invention,

physical restriction is beginning to prevent them from achieving higher com-

putation speed and energy efficiency. These two matrices, computation speed

and energy efficiency, are critical in data centers that handle gigantic data

traffic from all over the world. As the amount of data that data centers

handle is growing even more, computer developers need different ways of

improving computers. Among the several alternatives that have been pro-

posed, reconfigurable hardware is one of the most suitable choices, and this

is what we try to use in this study. Reconfigurable hardware promises higher

performance and energy efficiency in many application domains, and several

research groups have been trying to deploy it in data centers.

Meanwhile, reconfigurable hardware is used mainly by embedded or net-

working device vendors, and curious end users often simply enjoy trying

them with reconfigurable boards purchased on their own. This is because

it is difficult to obtain higher performance with inexpensive reconfigurable

boards, which an individual can buy, than with a commercially available

general-purpose processor, and reconfigurable boards that can exceed the

performance of commercial general-purpose processor are too expensive for

end users to buy individually. By deploying reconfigurable hardware and

making it available to the public, the cost of utilizing reconfigurable hard-

ware will go down and thus more end-users will be eager to use it. More

applications such as databases that require very low latency will be built

on reconfigurable hardware as well as general-purpose processors. Such a

computing system, which uses several general-purpose processors and recon-

figurable devices or heterogeneous systems, is too complicated for end users’

everyday use. As a consequence, to make the system look simple for the end

users, it will become more transparent: they will eventually not notice which

kind of computing device they are using.

However, there are many problems that must be solved before such a cloud

system can be widely used. Among them, we focus on two major problems

in this study: developing applications with reconfigurable hardware is more

difficult compared to software applications, thus, the cost of developing the

application is higher; and a method for using reconfigurable hardware in data

centers is not established.

In order to solve the first problem, we assess where the difficulties lie in

the state of the art design method that uses high-level synthesis tools for

developing hardware accelerated application systems, and propose a method

to overcome the difficulties. For solving the other problem, we propose a new

technique of using reconfigurable hardware in data centers.

Contents

1 Introduction 7

1.1 Background . 7

1.1.1 Problems of General Purpose Processors 7

1.1.2 Applications on Hardware 8

1.1.3 Growing Popularity of Reconfigurable Hardware 9

1.1.4 Reconfigurable Hardware in Data Centers 11

1.1.5 Open Issues of Reconfigurable Hardware in Data Centers 13

1.1.6 Future of Reconfigurable Hardware in Data Centers . . 18

1.2 Organization . 20

References . 22

2 Acceleration by HLS 24

2.1 Introduction . 24

2.2 Stream Processing . 25

2.3 Related Work . 26

2.4 DRP: The Evaluation Platform 28

2.5 Window Join on DRP . 29

2.5.1 Evaluation Strategy . 30

2.5.2 Step 1: Pure Software Code 31

2.5.3 Step 2: Sliding Window Buffer 32

2.5.4 Step 3: Parallel Output Buffer 33

2.5.5 Step 4: Match Table 35

2.5.6 Step 5: Chunk Data Prefetching 36

2.5.7 Step 6: Parallel Table Lookup 37

2.5.8 Step 7: Loop Folding (Pipelining) 38

1

2.5.9 Step 8: Low Match Rate Optimization 43

2.6 Discussion . 43

2.6.1 Optimization Overview 43

2.6.2 Performance . 45

2.6.3 Lessons learned . 46

2.6.4 Adaptive Stream Processing 49

2.7 Summary . 49

References . 51

3 Acceleration by a Hybrid Approach of HLS and RTL 53

3.1 Introduction . 53

3.2 Related Work . 55

3.3 SQL-Based Stream Processing Language 57

3.4 Our Approach . 57

3.4.1 Generalization of Queries into Abstract Hardware . . . 58

3.4.2 Mapping Abstract Hardware to C Code 59

3.4.3 Shallow Hardware Optimization in C Code 59

3.5 Evaluation . 60

3.6 Discussion . 61

3.7 Conclusion . 62

References . 67

4 Acceleration by I/O Caching 69

4.1 Introduction . 69

4.2 Key-value Stores in Data Centers 70

4.3 Background . 72

4.3.1 Memcached . 72

4.3.2 Related Work . 76

4.4 Concept of NIC Cache . 77

4.5 Cache Simulation . 78

4.5.1 Testing Tool . 79

4.5.2 Simulation Results . 83

4.6 Hardware Design . 84

4.6.1 Experimental Conditions 88

2

4.6.2 Latency . 89

4.6.3 Throughput . 90

4.7 Cache Size Maximization . 90

4.8 Discussion and Future Work 94

4.9 Conclusion . 95

References . 96

5 Conclusion 98

Acknowledgement 103

List of Publications 104

3

List of Figures

1.1 Simplified architecture of a typical reconfigurable hardware. . 9

1.2 Replacing general purpose processors in data centers with re-

configurable hardware. 11

1.3 Variations of organization of servers with reconfigurable hard-

ware. 15

1.4 Two architectures of servers for reconfigurable hardware and

general purpose processors. 17

2.1 Compilation flow. 27

2.2 DRP hardware overview. 28

2.3 Join and window join. 30

2.4 Synthesized hardware (Step 1). 32

2.5 Synthesized hardware (Step 2). 34

2.6 Expected hardware (Step 3). 36

2.7 Synthesized hardware (Step 4). 38

2.8 Timing chart of the folding. 39

2.9 Synthesized hardware (Step 8). 41

2.10 Throughput improvement. 45

2.11 Match rate dependency (Step 7 vs 8). 48

3.1 Comparison of conventional and our approaches. 55

3.2 Example queries and schema of incoming stream. 56

3.3 C function calls for nested queries. 64

3.4 Query module architecture and its code. 65

3.5 Throughput comparison between naive C written without hard-

ware development knowledge and parsed C. 66

4

4.1 The operation of memcached. 73

4.2 The image of the proposed method. 74

4.3 Connection of software modules. 78

4.4 Key access distribution for the first 5,000 requests. 79

4.5 Appearance interval of same keys for all workloads. 80

4.6 Cumulative ratio of keys. 81

4.7 Miss rate for GET requests with various replacement policies. 82

4.8 Miss rates for small cache sizes for Workload A with FIFO,

LRU, and LFU cache algorithms. 85

4.9 Miss rates with read-allocate and read-no-allocate for Work-

load C. 86

4.10 NIC cache architecture. 87

4.11 Correspondence of the hash table and the value storage. . . . 87

4.12 FPGA NIC mounted on a memcached server. 88

4.13 Throughput of the system with various hit rates. 91

4.14 Latency improvement with various associativity and cache ca-

pacity. 92

4.15 Miss rates with constant block memory size. 93

5

List of Tables

2.1 Performance metrics throughout the optimization process. . . 42

3.1 Usage of input bandwidth. 62

4.1 Memcached commands . 73

4.2 Description of YCSB workloads. 75

4.3 Design specification of FPGA 89

4.4 Latencies of the system. 89

4.5 Throughputs of the system based on RTL simulation. 90

6

Chapter 1

Introduction

1.1 Background

1.1.1 Problems of General Purpose Processors

Since its arrival in the 1940s, the computer has always been seeking higher

computation speed. This objective has been achieved through the replace-

ment of vacuum tubes with silicon transistors, miniaturization of the sili-

con process, and parallelization of processors. As general-purpose processors

based on von Neumann Architecture improved both from manufacturing pro-

cesses and processor architecture aspects, algorithms that assume such ar-

chitectures have been widely studied and improved.

After the use of computers spread widely in society, the demand for higher

energy efficiency increased. Today, many people have multiple computing

devices, and data centers of web service providers have tens of thousands

of servers of more. Thus, reducing the power consumption or improving

the energy efficiency of computers is critical for solving the ever-growing

energy problem. The performance of processors has improved continuously

by miniaturization of the silicon process, though Moore’s law, which predicts

that processor performance improvement will end in the next decade or so.

Among many solutions to this issue, using hardware dedicated for specific

applications is a prospective alternative. One such hardware that is already

in wide use is the Fast Fourier Transform (FFT) hardware accelerator [1]. In

7

contrast to general-purpose processors, which have not been developed for

a specific application, application-specific hardware achieves higher perfor-

mance and energy efficiency in exchange for generality. However, developing

application-specific hardware requires more in time and costs than developing

a software application that runs on a general-purpose processor. Solving this

cost issue is essential for application-specific hardware to be broadly used.

1.1.2 Applications on Hardware

Dedicated hardware for a specific application achieves higher performance

and energy efficiency than general-purpose processors because of the follow-

ing reasons:

• Application-specific hardware gains high parallelism that is specific to

the application.

• Application-specific hardware implements the instruction as hardware

circuits whereas general-purpose processors fetch instructions from the

memory and control the data path according to them, which leads to

increased energy consumption.

However, implementing a dedicated hardware costs more than implement-

ing software applications on a general-purpose processor in terms of time and

expense for the following reasons:

• Software development and hardware development require different skills,

and thus it is difficult for software engineers, who often develop the al-

gorithm, to design hardware.

• It is necessary to extract high parallelism from the application in order

to obtain high performance on dedicated hardware, and it is difficult to

extract high parallelism simply by converting the software algorithm to

hardware because software algorithms are intended to run on a general-

purpose processor that supposes serial processing.

• Although software can be executed immediately after writing or mod-

ifying the source code, hardware requires silicon chip manufacturing

which costs millions or tens of millions of dollars.

8

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

Switch

box

Switch

box

Switch

box

Switch

box

Switch

box

Switch

box

Switch

box

Switch

box

Switch

box

Carry

Logic

LUT

R
e

g

Memory block

Figure 1.1: Simplified architecture of a typical reconfigurable hardware.

Such advantages and disadvantages are significant especially for appli-

cation specific integrate circuits (ASICs) and even growing as the silicon

process continues to miniaturize. Recently, the increase of financial cost of

manufacturing silicon chips limits the opportunities to develop application

specific hardware.

1.1.3 Growing Popularity of Reconfigurable Hardware

As a solution for this situation, reconfigurable hardware is attracting wide

attention. Reconfigurable hardware is a hardware chip in which a hardware

developer can design and modify the internal circuit after production. Gen-

erally, on a reconfigurable chip, there are logic blocks (LBs) aligned in a grid

(Fig. 1.1). Each LB has a lookup table (LUT), a carry logic, and a register.

A user can program the LUT in an LB so that it can have an arbitrary com-

binational logic. (Some reconfigurable architectures use an arithmetic logic

unit (ALU) instead of LUTs.) Programming the multiplexer can configure

the connections among these elements within an LB. There are wires run-

ning vertically and horizontally in the grid throughout the chip to which the

LBs are connected, and the wires to be connected in the switch box can be

9

programmed. At the intersections of the wires, there are switch boxes that

can be programmed as to which vertical and horizontal wires should be con-

nected. In addition, some memory blocks are inserted on the chip whose wire

connections can be also programmed. By programming these programmable

elements, an arbitrary circuit can be implemented on a reconfigurable hard-

ware chip as long as the resource required for the application does not exceed

what is available on the chip.

The circuit is usually described with Hardware Description Language

(HDL) such as Verilog HDL or VHDL. The hardware description is con-

verted to information of the LUTs, multiplexers (MUXes), and switch boxes’

configuration by the tool that the reconfigurable hardware vendors provide.

(This configuration file is called a bit file.) The bit file is then downloaded to

the chip’s configuration memory, and the chip acquires the intended behavior.

Examples of reconfigurable hardware chips include field-programmable gate

arrays (FPGAs) [2], programmable logic devices (PLDs) [3], coarse grained

reconfigurable architecture (CGRA) [4], and a dynamically reconfigurable

processor (DRP) [5], etc.

The switches that configure the on-chip interconnection and redundant

wirings of reconfigurable hardware become the overhead and therefore, the

performance is lower than for ASICs. This limitation made reconfigurable

hardware used mainly for pre-manufacturing testing of ASICs until recently

because it was difficult to implement a high performance application on re-

configurable hardware. However, as the miniaturization of the silicon process

continued, reconfigurable hardware became capable of implementing suffi-

ciently practicable circuits. Now that the cost for making ASICs has risen,

there are more opportunities for reconfigurable hardware to provide a bet-

ter way of accelerating an application even if the performance is lower than

ASIC.

The progress of hardware development tools is another force that pro-

motes the dedicated hardware use. (This is not only for reconfigurable hard-

ware but also for ASICs.) Algorithms that search the hardware design space

are continuously improving the performance of hardware synthesized fro HDL

descriptions. Designing dedicated hardware is becoming less of an obstacle.

10

User

Application

developer

Data center

Cloud

SW

Servers with general

purpose processors

User

Application

developer

Cloud

SW HDL

Low latencyData center

Servers with general

purpose processors
Servers with

reconfigurable hardware

User

Application

developer

Cloud

SW

Low latencyData center

SW
HDL SW

(a)

(b)

(c)

Figure 1.2: Replacing general purpose processors in data centers with recon-

figurable hardware.

1.1.4 Reconfigurable Hardware in Data Centers

Many web service providers such as Google, Amazon, Facebook, and Mi-

crosoft, run data centers that have over tens of thousands of server comput-

ers (Fig. 1.2a). Running so many computers in parallel enables the service

to deal with an enormous amount of data at an enormous data rate. More-

over, the widespread use of cloud computing is moving the processes that

were done in computers of individuals to data center computers and aggre-

gating data that people and companies kept by on their own to web service

providers’ data centers.

11

A natural result of this trend is that the energy consumption of data

centers is becoming a growing issue. According to a report, one data center

consumes as much as power as one thermal power plant can generate [6].

Companies that run data centers are eager to reduce the power consump-

tion by improving the energy efficiency of servers and the efficiency of air

conditioning of data centers.

Dedicated hardware can solve the problem that data centers are facing.

As mentioned previously, dedicated hardware executes tasks faster and is

more efficient than general-purpose hardware, reducing computing resources

in number of processors and energy. In addition, because data centers aggre-

gate the tasks that were scattered to individuals’ and companies’ computers

all around the world, dedicated hardware can be more effective.

Reconfigurable hardware suits the usage in data centers for the same

reasons that apply to ASICs; however, there is a specific reason that re-

configurable hardware is better than ASICs in data centers: Reconfigurable

hardware can modify its functionality whenever necessary, which enables web

services powered by dedicated hardware to be updated more frequently than

using the more costly ASICs.

Recently, several studies have been actually trying to deploy reconfig-

urable hardware to data centers (Fig. 1.2b). One such work is by Microsoft

Research [7]. In this work, Putnam and his group accelerated Microsoft’s

search engine, Bing, with FPGAs. In their system, most of the search engine

is executed on general-purpose processors. However, the process called rank-

ing, which ranks possible search results and is a costly portion of a search

engine, is offloaded to FPGAs and accelerated. The experiment using 1,632

FPGA servers showed that the throughput doubled while keeping the la-

tency the same as software. Microsoft is plans to carry out this system in

production and to apply it to other applications.

A professional hardware development team that is particularly allowed to

access the facilities in the data center performs this work. However, another

study aims to open the reconfigurable hardware in the data center to the

public. The goal is to enable end users to use FPGA resources as much

as they want anytime by allocating virtual FPGA resources in the same

manner as software virtual machines in Infrastructure as a Service (IaaS)

12

[8]. This system successfully accelerated the application-level load balancer;

however, further evaluation is needed. If this system is effective for various

applications, it should soon become popular with many end users because

the cost of the reconfigurable hardware can be shared among those who use

the same hardware. Whereas every user must buy FPGA boards, costing

hundreds or thousands of dollars without such a cloud system, this system

will be much less expensive.

1.1.5 Open Issues of Reconfigurable Hardware in Data

Centers

However, there are some issues that still must be solved in order to use

reconfigurable hardware in data centers.

Hardware Development for Software Engineers

One issues is the difficulty for software engineers to develop application-

specific hardware. Although reconfigurable hardware provides high perfor-

mance and power efficiency to application developers with competitive cost,

the difficulties for software developers to design dedicated hardware prevents

reconfigurable hardware from being widely used by software developers (Fig.

1.2b). The reasons are as follows:

1. Compared to software programming languages such as C, Java and

Python that are used for developing applications that run on general-

purpose processors, HDLs such as Verilog HDL and VHDL that are

used for developing dedicated hardware use lower abstraction for de-

scribing the functionalities, and thus they are difficult for people to

understand.

2. Dedicated hardware gains processing speed by parallelizing the applica-

tion where general-purpose processors processes data basically serially,

and various techniques are required to extract maximum parallelism

without violating data dependencies.

13

3. Although general-purpose processors are based on von Neumann Ar-

chitecture, dedicated hardware does not have a specific architecture,

and this leads to broad design search space.

4. Because there are limited numbers of computing elements and memory

elements on a reconfigurable hardware chip, the application developer

should design the circuit so that it uses the elements in a balanced

manner.

Recently, a technology called High-Level Synthesis (HLS), which synthe-

sizes hardware circuits from codes that were written in software programming

languages such as C and Java, is becoming widely used among hardware

developers. Although HLS has been studied for decades, it was not until

recently that they could be in practical use and become bundled to devel-

opment tools provided by reconfigurable hardware vendors [9]. HLS relieved

the difficulty caused by reason 1 above and reduced the time for developing

hardware.

Although the remaining three difficulties have also been relieved by HLS

to some extent, they still remain as challenges. Examples of possible solutions

for reasons 2 and 3 are:

• to synthesize highly parallelized dedicated hardware from instruction

sequence for general-purpose processors.

• Synthesize hardware from application-specific description language.

• Generate a code from software code that is easy for HLS tools to syn-

thesize hardware.

In this study, we first clarify what is being a hurdle for software developers to

develop hardware when using an HLS tool. On the basis of the perception,

we propose a method based on the third method listed previously.

Reason 4 does not become an issue as long as the circuit we want to

implement is small enough that it consumes only a fraction of available re-

sources. However, when the resource usage is critical for the performance,

the possible solutions include

14

Server

Server

Server

Network General

purpose

processor

Reconfigurable

hardware

PCIe

General

purpose

processor

Reconfigurable

hardware

Reconfigurable

hardware

Network

Network

Server

Network General

purpose

processor

PCIe

General

purpose

processor

Reconfigurable

hardware

(a)

(b)

(c)

(d)

Figure 1.3: Variations of organization of servers with reconfigurable hard-

ware.

• offloading only the critical function to a dedicated hardware and using

a general-purpose processor for everything else

• dividing the circuit into pieces and distributing them to several recon-

figurable hardware chips

In this study, we assume that the circuit fits on a single chip. Although the

second approach is actively studied in the community, we do not cover it in

this study.

15

Architecture of Reconfigurable-hardware-powered Data Centers

Another problem of using reconfigurable hardware in data centers is that

the methodology of reconfigurable hardware’s usage for data centers is not

established yet. Reconfigurable hardware has been used in various forms in

computer systems:

• mounting a PCI Express board with reconfigurable hardware on a

server with a general-purpose processor (Fig. 1.3a)

• using a reconfigurable architecture core that is integrated with a general-

purpose processor core on the same chip (Fig. 1.3b), or using such a

chip mounted on a server with a general-purpose processor (Fig. 1.3c);

• using a server that has a reconfigurable hardware device and not a

general-purpose processor (Fig. 1.3d).

On using reconfigurable hardware, we should be very careful to select the

architecture of the system because the performance varies significantly when

reconfigurable hardware is involved in the system.

Here, we will classify computer applications in two categories: real-time

and non-real-time. In data centers, real-time application examples include

data retrieval and stream processing, which often require low latency, and

non-real-time application examples include indexing for search engines and

analyzing data stored in databases that often require high throughput.

For applications that require high throughput, placement of reconfig-

urable hardware in the data center does not have a significant effect on the

performance: what matters is whether the data source and hardware are

connected with a high-bandwidth connection. Hence, an extension board

with reconfigurable hardware connected to a server with a general purpose-

processor via PCI Express will fulfill the requirements as long as the band-

width of the PCI Express is sufficient. However, for applications that require

low latency, it works better if the reconfigurable hardware is placed near the

network inside the server, avoiding the extra latency that occurs when placing

a general-purpose processor in between the network and the reconfigurable

hardware.

16

Reconfigurable

hardware

Server

General

purpose

processor

Server

Network

Server

Reconfigurable

hardware

General

purpose

processor

Network

(a) (b)

Figure 1.4: Two architectures of servers for reconfigurable hardware and

general purpose processors.

An example of a server computer that has the network and reconfigurable

hardware directly connected and a general-purpose processor is not placed

in between is Maxeler Technology’s MPC-X series [10]. However, this server

does not have a general-purpose processor. Recently, using reconfigurable

hardware and general-purpose hardware together is becoming more popular

because reconfigurable hardware and general-purpose processors are good at

different types of applications and the development of such a heterogeneous

system is becoming easier and more efficient because of recent advances of

hardware development techniques. In addition, heterogeneous systems are

anticipated to be used more widely in data centers.

There are two types of architecture for using reconfigurable hardware and

a general-purpose processor in combination while connecting the network

directly to the reconfigurable hardware. One way is to use a server that

has only reconfigurable hardware such as the aforementioned MPC-X, and

connect it over a network to a regular server that has a general-purpose

processor (Fig. 1.4a). The latency of networks is decreasing every year.

Nevertheless, it is better not to have such latency. The other way is to

place reconfigurable hardware at the network interface of the server that

has a general-purpose processor (Fig. 1.4b). This architecture enables the

application developers to use both the reconfigurable hardware and general-

17

purpose processor together with a small latency between the two devices.

Examples of works that use such architecture are research on High Fre-

quency Trade (HFT) by NEC [11] and on Memcached by Xilinx [12]. In these

systems, the FPGA at the network interface does the process that should be

done at a low latency, and the general-purpose processor that is connected to

the FPGA via PCI Express does the computation that uses the output of the

FPGA or that the FPGA is not good at. The usage of the general-purpose

processors in these works were to do only a fraction of the computation that

the application requires or to do completely different computation between

the FPGA and the general-purpose processor.

In Chapter 4, we propose a novel method of taking advantage of the

architecture that places the reconfigurable hardware at the network interface

of a server computer that has a general-purpose processor. In this method,

the general-purpose processor and the reconfigurable hardware do basically

the same computation; however, the reconfigurable hardware does only the

functions that are frequently called with the frequently accessed data, and the

general-purpose processor handles the rest of them. This method enables the

reconfigurable hardware to process the data that comes in from the network

at a low latency, and at the same time, leaves the general-purpose processor

to do a variety of computations that are used less frequently. It also reduces

the cost of developing the hardware system of the application because only

a part of the application that is frequently used has to be implemented in

hardware.

1.1.6 Future of Reconfigurable Hardware in Data Cen-

ters

Research continues on deploying and using reconfigurable hardware in data

centers. Methods of using reconfigurable hardware over the Internet will de-

velop approximately in three steps. First, we will use computer boards with

reconfigurable hardware and a network connection. A reconfigurable hard-

ware board that does not require mounting on a computer via PCI Express

and are capable of programming from remote over the Internet will be shared

among many hardware developers also software developers that are curious

18

about developing hardware. Although some reconfigurable hardware boards

are very expensive, the developer using the board is not necessarily occupy-

ing the board all the time. Thus, sharing the board will reduce its non-active

period, reducing the cost for each developer. Even if reconfigurable hardware

becomes available in cloud systems, this kind of form of using reconfigurable

hardware will remain in the embedded system industry.

Next, reconfigurable hardware will be available for end users by allocating

its resources through IaaS. This method will enable an end users to use

multiple reconfigurable hardware as a computing fabric, or multiple end users

to share a single reconfigurable hardware device. At this step, the developer

using this method should still need the mindset and skills for developing a

hardware system regardless of using RTL or HLS (Fig. 1.2b).

In the final step, the user will not notice whether the person is running

a program on reconfigurable hardware or a general-purpose processor (Fig.

1.2c). This is due to the advances in hardware development technology.

The compiler and the program execution environment will run the software

program partially on the general-purpose processor and partially on the re-

configurable hardware while determining which is more efficient. Of course,

the end user will have the option to optimize the part that is executed on

reconfigurable hardware so that it will be faster and more efficient. How-

ever, as the hardware offloading technology matures, the cost of manually

optimizing the hardware will come to a point that it will not compensate

for the benefit of the performance improvement. This is the same situation

as software compilers in that it took over the manual optimization as its

compilation technique progressed.

In prospect of such future, the work we provide in this study is significant

in the following perspective:

• Hardware development technology for software developers is the most

important factor for introducing reconfigurable hardware to data cen-

ters. As we will go over in Chapter 2, knowing today’s latest hardware

development technology and analyzing the difficulties that remain will

shed light as to what should happen next, which should be done reg-

ularly because the fastest and most meaningful way to advance the

technology is to practice with the latest technology.

19

• As reconfigurable hardware goes transparent in data centers, the appli-

cation running on the hardware must be written entirely in software.

Extracting high performance from reconfigurable hardware with a soft-

ware program is a challenging task. The work introduced in Chapter

3 achieves this goal with several kinds of reconfigurable architectures

theoretically.

• When reconfigurable hardware becomes transparent in data centers,

functions of applications should be executed on various computing de-

vices such as reconfigurable hardware, general-purpose processors, and

graphic processing units (GPUs), either statically or dynamically so

that the application will be executed in the most efficient way. The

work discussed in Chapter 4 attempts to execute a part of the applica-

tion running on a general-purpose processor on a reconfigurable device.

1.2 Organization

In Chapter 2, we analyze the difficulties when a software developer tries to

develop a dedicated hardware with an HLS tool, which is the most straight

forward approach for a software developer to develop hardware. In particular,

we implement an operation called window join, an element operator of stream

processing, on DRP with CyberWorkBench (CWB). As a result of our step-

by-step implementation, we will show what kind of knowledge a software

developer would need to develop hardware.

In Chapter 3, we propose a novel method for software programmers to

develop application specific hardware with reconfigurable hardware. We take

StreamSQL, a description language specific to stream processing, as an ex-

ample for our method and propose a parser that converts StreamSQL queries

to C code intended to be synthesized to hardware configuration with an HLS

tool. This method enables application developers to develop hardware by

StreamSQL without having any knowledge of hardware development.

In Chapter 4, we propose a method of taking advantage of reconfigurable

hardware in data centers. We accelerate a server that runs memcached, an

in-memory key-value store, by caching its functionalities and data to its

20

network interface card (NIC) that is equipped with an FPGA and DRAM.

This method does not require any modification to the software memcached;

therefore, memcached servers that are already in operation can be enhanced.

Finally, in Chapter 5, we will summarize our work and discuss what

should be done in the future.

21

Bibliography

[1] Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Palecezny. Very

fast fourier transform algorithms hardware for implementation. IEEE

Transactions on Computers, C-28:333–341, 1979.

[2] R.H. Freeman. Configurable electrical circuit having configurable logic

elements and configurable interconnects, September 26 1989. US Patent

4,870,302.

[3] G. D. Electrically programmable logic circuits, June 18 1974. US Patent

3,818,452.

[4] Reiner Hartenstein. Coarse grain reconfigurable architecture (embedded

tutorial). In Proceedings of the 2001 Asia and South Pacific Design

Automation Conference, pages 564–570. ACM, 2001.

[5] Masato Motomura. A dynamically reconfigurable processor architecture.

Microprocessor Forum, 2002.

[6] Jonathan G Koomey. Worldwide electricity used in data centers. Envi-

ronmental Research Letters, 3(3), 2008.

[7] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,

Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-

ers, Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable fabric

for accelerating large-scale datacenter services. In Computer Architec-

ture (ISCA), 2014 ACM/IEEE 41st International Symposium on, pages

13–24. IEEE, 2014.

22

[8] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon Gar-

cia, and Paul Chow. Fpgas in the cloud: Booting virtualized hardware

accelerators with openstack. In Field-Programmable Custom Computing

Machines (FCCM), 2014 IEEE 22nd Annual International Symposium

on, pages 109–116. IEEE, 2014.

[9] The open standard for parallel programming of heterogeneous systems.

https://www.khronos.org/opencl/.

[10] Maxeler: Mpc-x series. https://www.maxeler.com/products/

mpc-xseries/.

[11] Hiroaki Inoue, Takashi Takenaka, and Masato Motomura. 20Gbps C-

based complex event processing. In Proceedings of the 2011 21st In-

ternational Conference on Field Programmable Logic and Applications

(FPL), 2011.

[12] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers, Jeremia Bär,

and Zsolt István. Achieving 10gbps line-rate key-value stores with fpgas.

In Proceedings of the 5th USENIX Workshop on Hot Topics in Cloud

Computing, pages 1–6, 2013.

23

Chapter 2

Acceleration by HLS

2.1 Introduction

In Chapter 1, we mentioned that it is difficult for software engineers to de-

velop hardware. If so, what specifically is difficult? Even though HLS has

made it easier for developers to design hardware with software programming

languages, difficulties still remain. In this chapter, we analyze the existing

difficulties through a development process of an application specific hardware

with C language and an HLS tool. Furthermore, we clarify what software

developers should know when they design hardware. This kind of knowl-

edge has not been explicitly clarified because hardware developers learn it

empirically. However, this knowledge should give directions to what should

be improved in order to make it easier for software engineers to develop

hardware.

The organization of this chapter is as follows. In Section 2.2, we explain

the significance and issues in hardware stream processing. In Section 2.3,

we introduce related works of developing a hardware stream processor with

software. After introducing the reconfigurable hardware platform that we

used in our case study in Section 2.4, we look into the details of our steps of

the development and optimization of window join that we implemented on

DRP with HLS tool. Then, in Section 2.6, we evaluate the performance of

our window join specific hardware and clarify the viewpoints that software

developer should need in order to develop a hardware system. Furthermore,

24

we point out the effectiveness of dynamically reconfiguration feature of DRP

to stream processing. Finally, we will summarize our work in Section Section

2.7.

2.2 Stream Processing

Stream processing [1] is attracting considerable attention as an important

computation paradigm in the era of big data and cloud computing. In con-

trast to conventional database processing, stream processing handles numer-

ous real-time data streams delivered through network at real-time through-

put, which is conventionally realized by distributed processing on parallel

servers. Although these approaches have been remarkably successful in han-

dling the dynamic nature of incoming streams [2], there still exists increasing

demand for even higher throughput. Moreover, the urgent need to reduce

the ever-rising power consumption in data centers [3] indicates the limitation

in relying upon such a power-hungry scale-out approach alone.

In view of this situation, hardware-oriented acceleration of stream pro-

cessing using field-programmable gate array (FPGA) has been actively stud-

ied [4–6]. In essence, hardware customized to a given problem can achieve

much higher throughput/power than a software solution that runs on general-

purpose hardware. However, such hardware solutions typically have two

major drawbacks: (1) they have limited in-field flexibility and (2) software

engineers find it difficult to design them. As adaptive query becomes an im-

portant notion in stream processing, issue (1) needs to be addressed seriously.

Since stream processing requires considerable effort at the algorithm devel-

opment level, owing to which this field employs mostly software engineers,

issue (2) is also a fundamental problem. Actually, solving these problems

on an FPGA-based framework has been an active research topic in recent

years [4, 7].

The dynamically reconfigurable processor (DRP) [8] may serve as another

good foundation to overcome these drawbacks from a different perspective.

As will be presented in Sect. 2.4, the DRP has rich in-field flexibility and

a software-friendly design environment (i.e., a fairly mature C-level design

tool). Since the DRP has been applied mostly in the domain of image pro-

25

cessing applications [9] and is used by engineers with hardware knowledge,

it is an interesting challenge to evaluate the performance of a DRP archi-

tecture and its design tool in solving the above-mentioned issues in stream

processing.

On the basis of this observation, we carried out an experimental step-by-

step implementation of adaptive stream processing on the DRP by consid-

ering window join, a simple but extensively studied important operation in

stream processing, as a case study. Our goal in this study is to find answers

to the following questions using the DRP evaluation platform:

• How and where a software source code should be modified to make it

an optimized source code for hardware synthesis

• In doing so, how a software engineer should be knowledgeable and

skilled in terms of hardware design

• How a state-of-the-art high-level design tool can hide hardware design

details from the software programmer

• How performance varies according to different modifications

• How dynamic reconfiguration helps achieve adaptiveness of the solution

The evaluation was performed in a sequential manner, so that further insights

could be obtained.

2.3 Related Work

Recently, several studies were conducted on hardware-accelerated stream

processing. One such work uses C programming and a high-level synthesis

tool [4]. This study expects the developer using this system to write simple

functions e.g., arithmetic operations, aggregation, etc., and to sequence them

in a regular expression. Circuits synthesized from the functions evaluate the

data stream, and if the sequence of return values satisfies the given regular

expression, the system asserts a signal. After its high performance being

26

Integrated

Design

Environment

Tool Launcher

with Iterative

Optimizer

Test Bench

Generator

FSM Viewer

Schduling

Result Viewer

Data-path

Viewer

On-chip

Source-level

Debugger

High-level Synthesizer

Verilog

Simulator

Technology Mapping Tool

Place & Route Tool

PE/Memory CodeSTC Code

DRP

Multi-context Verilog Modules

Context #nFSM

C

Figure 2.1: Compilation flow.

proven on an FPGA, this system has been enhanced in order to be dynami-

cally reconfigurable, and thus queries can be modified while the system is in

operation [7].

While these studies used C to describe the system discussed above, Mueller

et al. proposed Glacier, a hardware synthesis system that maps SQL queries

to hardware circuits [5]. The circuit consists of tiny circuit elements that cor-

respond to stream processing operators. Mueller et al. demonstrated that

the stream processor designed by this system and implemented on an FPGA

runs faster at lower energy than a CPU. Based on this system, a dynamically

reconfigurable stream processor that can switch its composition in a single

clock cycle has been proposed [10].

These studies generally indicate that providing a domain-specific design

framework on top of a general FPGA design platform is effective for accom-

modating stream processing systems in two ways: The synthesized circuits

will be fast enough without requiring hardware optimizations by developers,

and the system will be easier to be dynamically reconfigurable by limiting

the circuits’ degree of freedom. Despite lacking such a domain-specific design

27

64b64b

Memory

Controller
PCIExpress

Embedded

CPU

On-chip Bus

Ingress FIFO

(256W)

Egress FIFO

(256W)

DRP Core

Evaluation Chip in the Kit

To/from host PC

512 x 8b

2p SRAM

Reg Reg

8b

ALU

8b

ALU

Reg Reg

PE

State

Transition

Controller

512 x 8b

2p SRAM

16b

MPY

16b

MPY

16b

MPY

8k x 8b

1p SRAM

32b

MPY/DIV

External DRAM

Shown in architectural diagrams from Figure 6

Figure 2.2: DRP hardware overview.

framework, DRP is inherently dynamically reconfigurable and has a C-based

design tool, and hence it can be a platform for developing a stream process-

ing system. To the best of our knowledge, ours is the first study to have

evaluated such a system.

2.4 DRP: The Evaluation Platform

The dynamically reconfigurable processor (DRP) first presented in 2003 [8]

features an array of small processing elements and block memories onto which

user programs are compiled and mapped as hardware configurations (coarse-

grained reconfigurable architecture). It features one-cycle dynamic reconfig-

uration; in other words, hardware configuration can switch every cycle, which

is governed by a finite state machine (FSM) extracted from the user program.

Essentially, reconfiguration takes place when a state transition occurs in the

28

FSM [11].

There exists an integrated design tool for DRP based on high-level syn-

thesis technology whose compilation flow is depicted in Fig. 2.1 [12]. It first

synthesizes input source code in C into an FSM and a set of hardware con-

texts, where each context is associated with each state. FSM is compiled into

state transition controller (STC, explained later) code, and the hardware

contexts are mapped onto the PE/memory array. Basically, by spatially

mapping each primitive operation (each data structure) onto a different PE

(internal memory), inherent parallelism in given input source code is natu-

rally extracted in the resulting customized hardware. In addition, the tool

has powerful automatic optimization capabilities for enhancing the inherent

parallelism, thereby shortening the critical chain of operations, and reduc-

ing the PE/memory usage, such as speculative conditional branch execution

and balanced operation tree mapping. Moreover, the tool supports various

programmer-controlled optimization capabilities such as loop unrolling, loop

folding, and loop merging for extracting additional parallelism [11]. Overall,

the tool efficiently extracts/enhances parallelism as long as data and control

dependencies are maintained.

In this study, we consider a publicly available DRP evaluation kit [9].

Figure 2.2 shows the configuration of the evaluation chip used in the kit,

where DRP is integrated as an on-chip IP core. The DRP core in this partic-

ular implementation has 256 PEs, 48 two-port block memories (512 B each),

16 KB one-port block memories (8 KB each), etc. (see Fig. 2.2). The DRP

core is sandwiched between ingress and egress FIFOs (64b×256W each) that

are connected to an on-chip bus (this configuration is called an STP Engine

in [9].) The chip is mounted on a PCI Express card (called DRP Express)

for handy evaluation using off-the-shelf PCs, on which the GUI-feature-rich

tool runs.

2.5 Window Join on DRP

As is well known, join is one of the most important operators in relational

data processing [1]. The basic idea of join is to combine tuples from two

tables if their key fields match and create a new table (Fig. 2.3 (a)). While

29

A Key

1

2

3

a

b

c

B Key

1

2

1

x

y

z

B Key

1

2

x

y

A

a

b

1za

(a)

Stream R Stream S Stream R Stream S

(b) (c)

Figure 2.3: Join and window join.

the number of tuples in tables is limited, that of real-time streams is infinite;

therefore, an equivalent operator in stream processing introduces a sliding

window to limit the tuples on which it joins, i.e., window join (Fig. 2.3 (b)).

Since streams continuously flow through the window, window join has only

to compare the newly entered tuple in the R(S) stream with those in the

S(R) stream’s window (Fig. 2.3 (c)).

2.5.1 Evaluation Strategy

Though the algorithm is simple, the window size in a realistic stream pro-

cessing application tends to become very large (e.g., tens of thousands), and

hence, it is difficult to conduct comparisons in parallel on monolithic hard-

ware. In view of this problem, the handshake join concept was proposed [6]

and examined [13], where the window is partitioned into a series of sub-

windows on which window join operators are executed in parallel. In this

way, a huge window join can be divided and distributed among a number of

different FPGA chips. In our window join evaluation on DRP, we adopt this

concept overall, and focus on designing an efficient window join operator for

each sub-window. In other words, we design a system that deals with only

one sub-window on DRP and we will refer to this sub-window as simply a

30

Algorithm 1 Step 1 algorithm.

1: loop

2: registerR ⇐ ingressFIFO ⇐ rt

3: for i ⇐ 0 to N − 1 do

4: registerS ⇐ ingressFIFO ⇐ st−i

5: if regisgerS = registerR then

6: O ⇐ egressFIFO ⇐ {registerS, registerR}
7: end if

8: end for

9: (Repeat line 2 to 8 here reversing R and S, and r and s.)

10: t ⇐ t+ 1

11: end loop

“window” hereafter in this chapter.

Our window join case study begins with pure software code. Following our

analysis of the inefficiency of synthesized hardware architectures, we grad-

ually introduce optimization/modification to the source code until a fairly

optimized code for hardware is arrived at. By tracing the code transitions

carefully, we believe we can resolve the issues raised in Sect. 2.2.

We applied the following design parameters in the evaluation, considering

the limited hardware resource on the DRP evaluation chip: (1) The size of a

window (N) is set to 16 tuples and (2) each tuple in R and S streams is 32b,

with a 16b key field and a 16b value field. Here, key is randomly synthesized

so that we can modulate the match rates. Setting of these parameters will

be discussed in Sect. 2.6.

2.5.2 Step 1: Pure Software Code

We begin with a very simple C source code appropriate for software engineers.

The code substitutes tuples r(s) in streams R(S) to registerR(S) every time

they are compared (Algorithm 1). RegisterR(S) declared in the source code

is allocated in the DRP core, which results in the hardware architecture

shown in Fig. 2.4. This architecture is clearly inefficient because the same

tuples are moved from an external DRAM into registers inside the DRP core

31

DRAM R stream (R)

S stream (S)

Output stream (O) Tuple s

Tuple r

ingress

FIFO

egress

FIFO

DRP Core

registerR

registerS

=

32 bits

32 bits

64 bits

Figure 2.4: Synthesized hardware (Step 1).

repeatedly. The window join throughput (measured in terms of the incoming

tuple rate) is 6.7 Mbps (Table 2.1). Table 2.1 summarizes the throughput

and other performance metrics discussed further in Sect. 2.6.

2.5.3 Step 2: Sliding Window Buffer

In Step 1, each tuple is read from the DRAM several times. Since external

memory access has a large delay, reducing the number of accesses should

improve the window join throughput. We will reduce the number of DRAM

accesses by buffering the tuples that belong to the window inside the DRP.

This observation makes us to declare arrays (wR and wS) in the code and

compare newly introduced tuples (wR0 and wS0) with the remaining tuples

in wS and wR (Algorithm 2). The resultant architecture shown in Fig. 2.5

(note that the shift registers for wR and wS are synthesized) shows 17-fold

32

Algorithm 2 Step 2 algorithm.

1: loop

2: for i ⇐ N − 1 to 1 do

3: wRi ⇐ wR(i−1)

4: wSi ⇐ wS(i−1)

5: end for

6: wR0,S0 ⇐ ingressFIFO ⇐ {rt, st}
7: for i ⇐ 0 to N − 1 do

8: if wR0 = wSi then

9: O ⇐ egressFIFO ⇐ {wR0, wSi}
10: end if

11: if wS0 = wRi then

12: O ⇐ egressFIFO ⇐ {wRi, wS0}
13: end if

14: end for

15: t ⇐ t+ 1

16: end loop

throughput improvement.

2.5.4 Step 3: Parallel Output Buffer

The 2N comparisons in Algorithm 2 could have been executed in parallel

by allocating 2N comparators inside the DRP core since there is no data

and control dependency among them. However, the synthesized hardware

(Fig. 2.5) fails to exploit this parallelism. The reason is egressFIFO, which

can take in one data item at a time, while each of the 2N comparisons may

produce an output tuple.

A solution to this problem is to declare 2N output buffers in the source

code (Algorithm 3), so that each of the potential matches can possess a buffer

to store the result. Hence, the tool can safely parallelize the 2N comparisons.

compare1(·) does this 2N comparisons, concatenates the tuples whose keys

matched, and returns them. One of the parallel buffers, on the other hand,

will get the opportunity to write a tuple into egressFIFO (pop(·)) every main

33

ingress

FIFO

egress

FIFO

DRP Core

wR

wS

shift

shift

N

wR0

wS0

Figure 2.5: Synthesized hardware (Step 2). Although the tuples still comes

from the external DRAM, it will not be shown in this figure nor the subse-

quent figures in order to save space.

loop cycle (this is realized by the for loop that starts at line 3 and ends at

line 8). Since the buffers are implemented as stacks, we use push and pop

for accessing them. The idea is essentially to decouple parallel comparisons

from serial egressFIFO access, which is feasible as long as the bandwidth at

egressFIFO is lower than that at ingressFIFO, i.e., a low match rate. The

match rate issue will be discussed in Sect. 2.5.9 and 2.6.1.

We expected the tool to synthesize an architecture that achieves drastic

performance improvement, as shown in Fig. 2.6. We assigned a directive (not

mentioned in Algorithm 3, however, for better visibility) so that the buffers

(buffer1∼2N) will be realized by registers. The throughput, however, actually

reduced to 8 Mbps due to the comparisons not being done in a single cycle.

This is because the parallel output buffer required more registers than what

is available in a single context. When a resource shortage takes place, the

synthesis tool divides the context into several contexts so that the resource

usage of each context does not exceed the limit.

34

Algorithm 3 Step 3 algorithm.

1: loop

2: for i ⇐ 1 to 2N do

3: for k ⇐ N − 1 to 1 do

4: wRk ⇐ wR(k−1)

5: wSk ⇐ wS(k−1)

6: end for

7: wR0,S0 ⇐ ingressFIFO ⇐ {rt, st}
8: buffer1∼2N ⇐push compare1 (wR,wS)

9: O ⇐ egressFIFO ⇐ pop(buffer i)

10: t ⇐ t+ 1

11: end for

12: end loop

2.5.5 Step 4: Match Table

Since registers and block memories are observed to be critical resources in

parallelizing an window join operation, it becomes crucial to minimize buffer-

ing requirements. Generally speaking, registers can be accessed with more

parallelism, but are more expensive than block memories. Therefore, it is

important to examine the usage of registers relatively more carefully. This

observation leads us to re-write the code, as shown in Algorithm 4. Here,

wR(S) receives only the key fields, while whole tuples go to storageR(S). The

function compare2(·) does the 2N comparisons between wR and wS and re-

turns match results that is encoded to 32-bit-width vector. This bit vector

is stored to table, which in turn points the location of matched tuples in

storageR(S). The function output1(·) then returns the matched tuples to

egressFIFO by acquiring appropriate tuples, which are found by decoding

the bit-vector, from storageR(S). Variable l in the figure represents the dif-

ference in time between the matched tuples. It is used for encoding and

decoding the location of them in the storages.

The tool synthesized the hardware architecture shown in Fig. 2.7. Note

here that registers are used only for keys that need to be compared in paral-

lel, and buffering requirement is reduced drastically by avoiding redundantly

35

ingress

FIFO

egress

FIFO

DRP Core

wR

wS

shift

shift

buffer1

buffer2

buffer2N

N

Figure 2.6: Expected hardware (Step 3).

duplicating tuples to multiple output buffers (L is set to the length of in-

gressFIFO, which is 256). The throughput recovers to 103 Mbps, since now

it can conduct 2N comparisons in parallel.

The entities in the figures are realized by registers if it is depicted with

single lines, and block memories if depicted with double lines. Moreover,

arrays in the codes can be synthesized either by registers or block memories,

and the programmer can specify which to use in the code by writing directives

in the form of comments.

2.5.6 Step 5: Chunk Data Prefetching

Now that the register/memory shortage is solved and comparisons can be

fully parallelized, the next obvious performance bottleneck is the stream

input to the DRP core. Thus far, source codes brought R and S tuples

one at a time, incurring idle time in waiting for the arrival of the tuples.

A solution is simply to read tuples in chunks so that ingressFIFO almost

always has enough input tuples to join. This is realized by calling a DRP

specific API which orders the Memory Controller to burst access the external

DRAM, taking data size for its parameter. For this purpose, we set the size

of each chunk to that of ingressFIFO. As a result, the throughput increases

threefold than obtained in the previous step.

36

Algorithm 4 Step 4 algorithm.

1: loop

2: optr ⇐ 1

3: for iptr ⇐ 1 to L do

4: for i ⇐ N − 1 to 1 do

5: wRi ⇐ wR(i−1)

6: wSi ⇐ wS(i−1)

7: end for

8: wR0,S0, storageR,S[iptr] ⇐ ingressFIFO ⇐ {rt, st}
9: table[iptr] ⇐ compare2(wR, wS)

10: O ⇐ egressFIFO ⇐ output1(table[optr], storageR,S)

11: if table[optr] has no positive bits then

12: optr ⇐ optr + 1

13: end if

14: t ⇐ t+ 1

15: end for

16: end loop

2.5.7 Step 6: Parallel Table Lookup

In Steps 4 and 5, there are 32 bit-slots in a single table entry (a bit-vector).

Though the bit-vector occupies little space, decoding it is tedious for a coarse-

grained architecture such as DRP. Actually, it becomes a critical path that

limits the maximum operation frequency. To resolve this problem, we split

the table into four 8b tables that can be handled relatively fast. This modi-

fication enables us to execute compare2(·) and output1(·) in Algorithm 4 as

four parallel 8b operations that decrease the circuit delay.

In Step 5, we were treating the 32-bit column as a single variable. There-

fore, the circuit became a five (= log2 32) stages’ binary tree of OR gates

that aggregates the comparison results. Each of the comparison results is

shifted before being aggregated at minimum zero bits and at maximum 31

bits uniquely according to the location where the match was found. Since

DRP has a 8-bit architecture, each OR gate and shifter are realized by combin-

ing four 8-bit PEs. Combining multiple PEs and realizing a PE with a larger

37

ingress

FIFO

egress

FIFO

DRP Core

wR

wS

shift

shift

storageR

storageS

table

iptroptr

L

memory

register

l

l

‘1’

Figure 2.7: Synthesized hardware (Step 4).

bit width automatically is one of the HLS tool’s functionalities. Overall,

there was delay of six gate levels.

On the other hand, the idea of the circuit in this step is basically the same

as the previous step, except that an column is treated as an 8-bit variable.

Therefore, there will be one shifter and only three (= log2 8) stages’ binary

tree of OR gates. Of course, this logic will be parallelized with four (= 32/8)

identical paths, but the circuit delay will be the same. Hence there was a

delay of four gate levels. Note that each gate has less delay than a gate used

in Step 5, because the gate in this step does not combine multiple PEs and

used as a larger gate with wider bit width.

However, since the tool divided these circuits into several contexts, the

actual inter-register delay of these circuits are not so different. Instead, the

number of contexts of these circuits was four in Step 5, and two in Step 6.

This is the major cause of the difference between the throughput of the two

architectures. As a result, the throughput improved by 83%.

2.5.8 Step 7: Loop Folding (Pipelining)

As explained in Sect. 2.4, the tool features a loop folding option, which

essentially allows each iteration of the loop to start as early as possible,

overlapping with previous iterations, as far as data/control dependencies

38

Input from

ingressFIFO

Add new keys

to shift registers

Compare keys
Write comparison

results to table

Store tuples

to storage

Read column

from table

Find a positive bit

in column

Read tuples

from storage

Output to

egressFIFO

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

time

time

(a)

(b)

Figure 2.8: Timing chart of the folding.

allow. Though this is a powerful high-level synthesis feature that can extract

additional parallelism, there are several conditions that should be met by the

source code, e.g., the code should have no inner-loops. Another tool option,

loop unrolling, is also exploited to meet this condition here.

Figure 2.8a shows the timing of the functionalities in the main loop (each

iteration takes five cycles). The tool generated a circuit that folds this loop,

initiating iterations every three cycles (Fig. 2.8b). The number of cycles per

main loop initiation improved to three, which was four in the previous step.

The reason why the number of cycles in the main loop increased is because

the tool coordinated the states by dividing them in order to maintain data

dependencies. As a result, the throughput improvement at this step was

39

Algorithm 5 Step 8 algorithm.

1: loop

2: for iptr ⇐ 1 to L do

3: for i ⇐ N − 1 to 1 do

4: wRi ⇐ wR(i−1)

5: wSi ⇐ wS(i−1)

6: end for

7: wR0,S0, storageR,S[iptr] ⇐ ingressFIFO ⇐ {rt, st}
8: buf 1∼2N ⇐push compare3 (wR,wS)

9: t ⇐ t+ 1

10: end for

11: for i ⇐ 1 to 2N do

12: while buf i is not empty do

13: O ⇐ egressFIFO ⇐ output2(pop(buf i), storageR,S)

14: end while

15: end for

16: end loop

87%.

40

buffer1

buffern

buffer2N

(iptr)ingress

FIFO

egress

FIFO

DRP Core

wR

wS

shift

shift

storageR

storageS

iptrmemory

register

l

l

L

Figure 2.9: Synthesized hardware (Step 8).

41

T
ab

le
2.
1:

P
er
fo
rm

an
ce

m
et
ri
cs

th
ro
u
gh

ou
t
th
e
op

ti
m
iz
at
io
n
p
ro
ce
ss
.

T
h
rp
t

F
re
q

S
ta
te
s

Id
le

R
es
ou

rc
es

#
[M

b
p
s]

S
ta
te
s

[M
H
z]

/t
u
p
le

[%
]

A
L
U

2p
M

1p
M

R
eg

R
em

ar
k
s

1
6.
8

19
53

98
.6

80
.2

28
0

0
88

P
u
re

so
ft
w
ar
e
co
d
e

2
11
3

10
5

55
18
.8

38
.8

11
9

0
0

58
6

S
li
d
in
g
w
in
d
ow

b
u
ff
er

3
8.
6

48
49

34
9.
0

3.
2

55
3

0
0

20
20

P
ar
al
le
l
ou

tp
u
t
b
u
ff
er

4
10
3

23
53

14
.3

56
.6

14
9

12
0

23
5

M
at
ch

ta
b
le

5
31
1

32
37

7.
4

3.
2

10
9

12
0

32
6

C
h
u
n
k
d
at
a
p
re
fe
tc
h
in
g

6
57
1

38
40

4.
3

5.
4

11
4

12
0

25
5

P
ar
al
le
l
ta
b
le

lo
ok

u
p

7
10
68

32
56

3.
1

7.
7

21
5

16
0

37
2

L
o
op

fo
ld
in
g
(p
ip
el
in
in
g)

8
14
69

11
3

38
1.
4

14
.7

32
0

32
16

31
5

L
ow

m
at
ch

ra
te

op
t.

42

2.5.9 Step 8: Low Match Rate Optimization

Though not explained explicitly, Steps 4 through 7 do not rely on the low

match rate assumption unlike Step 3: when the match rate is high and

storageR(S) becomes full (iptr = L), output2(·) runs until optr reaches L

and storageR(S) becomes empty. However, if a low match rate is expected

between the two streams, a different optimization strategy can be considered;

we consider separating the output2(·), which runs scarcely, from the main loop

so that the loop can run faster.

In order to realize the architecture shown in Fig. 2.9, we rewrite the

source code as in Algorithm 5. Unlike the source codes until Step 7, now it

has two separate for loops. In addition, as a minor improvement, we replace

table with parallel buffers (stacks) that hold indices of matched tuples in

storageR(S). As introduced in Sect. 4.5, the variable l here represents the

difference in time of matched tuples and used for encoding the location of

them in the storages. The function compare3(·) does the 2N comparisons

between wR and wS and pushes the value of iptr to the buffers which corre-

spond to where the match was found. The function output2(·) pops one of

the buffers and retrieves the location of matched tuples in the storages. In

the synthesized architecture (Fig. 2.9), the first loop is successfully folded

by the tool and is executed in a single cycle. The throughput is improved by

38%.

2.6 Discussion

2.6.1 Optimization Overview

Table 2.1 summarizes the performance metrics throughout the optimization

process. The reported input throughput (“Thrpt”) was measured by setting

the match rate to 0.1%. “States” indicates the total number of states in the

synthesized FSM, while “States/Tuple” is the number of dynamic states per

incoming tuple. Since the DRP can run one state per clock cycle, “Freq”

(clock frequency) divided by “States/Tuple” determines the throughput if

there is no “Idle” time. Here, “Idle” is due to an empty ingressFIFO and/or

a full egressFIFO. Hence, code optimization is performed to improve these

43

three metrics.

As shown in Table 2.1, Step 1 clearly suffers from excessive “idle” cycles.

This is because a certain number of idle cycles occurs each time the DRP

Core accesses the DRAM, and the system brings the same tuples several

times. As we explained in Sect. 2.5.3, we reduced the numbers of DRAM

access in Step 2. You can see the percentage of idle cycles reduced just by

reducing the number of DRAM accesses. However, not being able to compare

the keys in the shift registers in parallel, Step 2 still takes about 19 states on

average per tuple.

Table 2.1 also shows that the parallel buffers we employed in Step 3 re-

quired 2020 registers whereas only 512 are available. Moreover, the number

of ALUs (553) was also exceeding the limit (512). This resource shortage

resulted in context division which further led to throughput reduction. In

Step 4, the architecture which uses block memories reduced the number of

required ALUs and registers. You can see in Table 2.1 that two port mem-

ories are newly used and the number of ALUs and registers (149 and 235

respectively) reduced. The table and the storages were realized by two port

block memories so that the input, comparison and output processes do not

interfere with each other.

The reason that the percentage of idle cycles increased in Step 4 is that the

number of idle cycles caused by accessing the DRAM did not change although

the total processing time decreased. Likewise, the reason the percentage of

the idle cycles increased after hitting the bottom in Step 5 is that there is

a minimum amount of idle cycles that occurs at the beginning and the end

of the entire process which cannot be eliminated even by burst accessing the

DRAM. Therefore, as the number of the entire processing cycles reduced,

the ratio of the idle cycles increased.

In Step 8, we detached the output operations (checking the buffers, select-

ing the matched tuples in the storages, and outputting the tuple to egress-

FIFO) from the main loop. As a result, the number of states in the main

loop (line 2 to 5 in Algorithm 5) reduced and therefore achieved almost 1

state/tuple. On the other hand, the output operations became more complex

and the number of states for the operations increased. (Note that the num-

ber of states described in Table 2.1 includes all the states regardless of the

44

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Step

Approximately 8.3 Mbps/W

(Intel Core i5-2520M 2.5 GHz

 with unoptimized code)

Approximately 156 Mbps/W

(DRP Express with Step 5 architecture)

Figure 2.10: Throughput improvement.

state being a part of the main loop or not.) However, when the match rate

of the tuples between the two streams is very low, the output operations run

scarcely. Therefore, states/tuple decreased as a whole in spite of the overall

number of states increased.

Since storages no longer needs to be accessed in parallel in Step 8, the

storages use one port block memories. For the same reason, the buffers could

be realized by using one port block memories, but two port block memories

were used. The reason for this is that although there had to be 32 buffers

in parallel, there were only 16 one port block memories in the DRP Core.

Therefore, although the buffers do not have to be accessed in parallel, they

are implemented with two port block memories, which are more sufficient.

2.6.2 Performance

Figure 3.5 highlights the throughput improvement. Step 8 is 216 times faster

than Step 1. Looking at this result, we can say that we have good control

of DRP only with C codes. For reference, we evaluated a straight forward

(unoptimized) window join code written in C running on Core i5-2520M

(2.5 GHz). The horizontal line in Fig. 3.5 indicates the throughput of the

CPU code, which was 290 Mbps. You can see that the throughput of DRP

does not exceed the CPU until Step 5. Before Step 5, we had made several

optimizations that require hardware development knowledge. For example,

45

in Step 3, we employed parallel buffers in order to make the comparisons in

the window in parallel. In Step 4, we tried to detour the lack of registers

by utilizing block memories. This means that the programmer should have

some hardware knowledge to make a DRP code run faster than a primitive

CPU code.

We will not discuss the maximum throughput of DRP and CPU, since we

have not fully optimize the CPU code. However, comparing Step 5 and the

CPU, which have almost the same throughput, throughput/power of DRP

was about 19 times higher than that of the CPU. We assumed that their

power consumption to be their Max TDP, 2 W for DRP and 35 W for CPU,

not having facilities to measure power consumption.

Our work focuses not on competing with window join systems imple-

mented on other reconfigurable hardware, but on illustrating how software

developers use C-based HLS. However, for your reference, the throughput of

handshake join algorithm implemented on an FPGA [13] was a little over 1

[M tuples/s] whereas ours (Step 7 architecture) was approximately 12.5 [M

tuples/s] when the match rate between two streams are 10%. The relatively

higher throughput of our work is due to small tuple size (32 bit width), and

small window size (16 tuples). The tuple size was 64 bit width and the win-

dow size was 512 in [13], which will enormously reduce the throughput of our

system if adopted.

2.6.3 Lessons learned

As discussed in Sect. 2.2, a key for more widespread adoption of reconfig-

urable hardware acceleration is to increase its availability to software en-

gineers. From the in-depth examination of the window join optimization

process, we would like to propose the following “Five Awarenesses” as a

must-have for a stream processing programmer trying to exploit reconfig-

urable hardware acceleration.

• I/O Awareness: Since I/O tends to be a throughput bottleneck when

designing a high-throughput stream processing system, a programmer

should find a way to maximize I/O usage in order to maximize the

throughput. For example, in Step 2, we reduced the number of accesses

46

to the same tuples in the streams, which improved the throughput by

17 folds. We also reduced the number of idling cycles by prefetching the

tuples, and improved the throughput by 200%. Suitable buffering leads

to maximizing I/O throughput and helps relieving the bottlenecks in

the system.

• Buffer Awareness: Buffers are useful for dividing the system into

input, intermediate and output processes. As we mentioned above, by

doing this, we can focus on relieving the bottlenecks in each processes.

For example, in Step 2, we reduced the DRAM access by buffering

the input tuples. In Step 4, wR,S and storageR,S isolate the input and

output processes from the comparison process. Therefore, we just had

to focus on increasing the parallelism and reducing the iteration interval

of the main loop. The programmers should also be aware that FIFOs

are not the only buffering method; they should find the appropriate

buffering method for the application.

• Resource Amount Awareness: The programmer should reconsider

the buffering architecture when the resources are lacking. This is be-

cause input, intermediate and output processes share the hardware re-

sources although they are isolated by buffers and the programmer can

focus on each of them separately. In order to gain parallelism in Step

3, we tried to buffer the output tuples with parallel buffers. However,

we had to reconsider the architecture since the ALUs and registers

were not enough to implement the parallel buffers. Creating a suit-

able architecture that the resources are used in good balance enables

programmers to focus on optimizing each process.

• Loop Awareness: After dividing the processes into input, intermedi-

ate and output with well balanced resource usage, and the input and

the output processes are no longer the bottlenecks, the loops in the

intermediate process becomes the bottleneck. One of the common and

powerful techniques of improving the parallelism of the loops is to fold

them, as we have done in Step 7. However, to fold the loops, some

requirements should be met. For example, the inner loops should be

47

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.01 0.1 1 10
 0

 0.5

 1

 1.5

 2

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

R
a

ti
o

 (
S

te
p

7
/S

te
p

8
)

Match rate [%]

Step7

Step8

Ratio

Figure 2.11: Match rate dependency (Step 7 vs 8).

unrolled, which can be done by assigning a directive to the loop, and

data dependency should be resolved by suitably choosing registers, one

port block memories or two port block memories for storing the data.

Improving the parallelism in the main loop requires laborious work but

greatly improves the performance of the system.

• Resource Type Awareness: Knowledge about the underlying re-

source, e.g., ALU and internal memory granularity, also helps opti-

mizing the source code to fit the underlying hardware platform. For

example, we were able to reduce the delay of the circuit by dividing

the table into four parallelized partial tables utilizing the DRP’s 8-bit

architecture. In the later steps of the optimization, especially the reduc-

ing phase of loop iteration interval, reducing the delay by considering

the resource characteristics eventually leads to reducing the number

or states in the main loop. Although resource type is scarcely con-

sidered when writing software, programmers should be aware of when

developing a hardware.

To avoid confusion, it is important to ensure that all the window join

codes are written in C, and that the tool can hide hardware details such as

FSM synthesis, ALU mapping, register/memory mapping, place and rout-

ing, and I/O allocation. Nevertheless, the above “Five Awarenesses” are

48

important for the optimization process. The question is whether the tool

will become smart enough in the future such that these awarenesses will not

be required. To the best of our knowledge on window join, this is impossi-

ble, since those steps involve architectural creation in addition to technical

optimization (the latter should become more transparent to programmers as

the tools become smarter).

In spite of expecting the tools to create new architectures, we believe that

what we really need is to establish a stream-oriented programming model,

an abstraction layer to a programmer, that allows the “Five Awarenesses” to

be naturally accomplished. Hence, our future work is to 1) investigate more

stream processing examples on the DRP and other reconfigurable architec-

tures such as FPGA to validate the above proposal, and to 2) establish a

programming model to cover essential features of stream processing applica-

tions.

2.6.4 Adaptive Stream Processing

Figure 2.11 compares the throughput of Steps 7 and 8, the latter being

optimized for a low match rate. For a match rate more than 1.5%, Step 7

performs better than Step 8. The ratio of Step 7 to Step 8 is 0.69 at 0.1% and

1.62 at 10%. Since the DRP core can reconfigure its configuration cycle-to-

cycle, it can instantly switch between Steps 8 and 7 when, for example, the

match rate between two input streams dynamically changes between low and

high states. As this example demonstrates, dynamic reconfiguration can be

utilized for adaptive stream processing, which will be examined using more

realistic stream processing applications in future.

2.7 Summary

The objectives of our work in this chapter were to clarify the difficulties of

developing a dedicated hardware with a software programming language and

an HLS tool, to find the difficulties for software developers to design hard-

ware, and to define the viewpoint that software developers should have in

order to develop hardware. To achieve these objectives, we picked stream

49

processing, especially window join which is a costly operator of stream pro-

cessing, as a case study and implemented it on DRP, which is suitable to

stream processing due to its dynamic reconfigurability.

Through repeated experiments, we conclude that 1) a state-of-the-art

high-level synthesis tool is sufficiently powerful for writing all source code in

C, while hiding hardware details from the programmer on one hand, and ex-

tracting inherent parallelism from the source code on the other, 2) a through-

put improvement of two orders of magnitude can be achieved by code opti-

mization, 3) “Five Awarenesses” (I/O, Buffer, Resource Amount and Type,

and Loop) are critical for a software engineer to carry out optimization, and

additionally, 4) the dynamic reconfiguration feature is attractive for coping

with the dynamically changing nature (adaptiveness) of stream processing.

Our analysis on window join demonstrated that establishing a program-

ming model that provides an abstraction layer to the software engineer is

essentially important for wider adoption of reconfigurable hardware acceler-

ation. As future work, we will examine our proposal in further detail with

more applications and on wider range of platforms including commercial

FPGA.

50

Bibliography

[1] Arasu, A., Babu, S. and Widom, J.: The CQL continuous query lan-

guage: semantic foundations and query execution, The VLDB Journal,

Vol. 15, No. 2 (2006).

[2] Gedik, B., Andrade, H., Wu, K.-L., Yu, P. S. and Doo, M.: SPADE:

the system s declarative stream processing engine, Proceedings of the

2008 ACM SIGMOD International Conference on Management of Data

(2008).

[3] Koomey, J. G.: Worldwide electricity used in data centers, Environmen-

tal Research Letters, Vol. 3, No. 3 (2008).

[4] Inoue, H., Takenaka, T. and Motomura, M.: 20Gbps C-Based Complex

Event Processing, Proceedings of the 2011 21st International Conference

on Field Programmable Logic and Applications (FPL) (2011).

[5] Müller, R., Teubner, J. and Alonso, G.: Streams on Wires - A Query

Compiler for FPGAs, Proceedings of the VLDB Endowment, Vol. 2,

No. 1 (2009).

[6] Teubner, J. and Mueller, R.: How soccer players would do stream joins,

Proceedings of the 2011 ACM SIGMOD International Conference on

Management of Data (2011).

[7] Takagi, M., Takenaka, T. and Inoue, H.: DYNAMIC QUERY SWITCH-

ING FOR COMPLEX EVENT PROCESSING ON FPGAS, Proceedings

of the 2012 22nd International Conference on Field Programmable Logic

and Applications (FPL) (2012).

51

[8] Motomura, M.: A dynamically reconfigurable processor architecture,

Microprocessor Forum (2002).

[9] Motomura, M.: STP Engine, a C-based Programmable HW Core featur-

ing Massively Parallel and Reconfigurable PE Array: Its Architecture,

Tool, and System Implications, Proceedings of the COOL Chips XII

(2009).

[10] Miyoshi, T., Kawashima, H., Terada, Y. and Yoshinaga, T.: A Coarse

Grain Reconfigurable Processor Architecture for Stream Processing En-

gine, Proceedings of the 2011 21st International Conference on Field

Programmable Logic and Applications (FPL) (2011).

[11] Toi, T., Nakamura, N., Kato, Y., Awashima, T., Wakabayashi, K. and

Jing, L.: High-level synthesis challenges and solutions for a dynamically

reconfigurable processor, Proceedings of the 2006 IEEE/ACM Interna-

tional Conference on Computer-aided Design (ICCAD) (2006).

[12] Toi, T., Awashima, T., Motomura, M. and Amano, H.: Time and

Space-multiplexed Compilation Challenge for Dynamically Reconfig-

urable Processors, IEEE International Midwest Symposium on Circuits

and Systems (2011).

[13] Oge, Y., Miyoshi, T., Kawashima, H. and Yoshinaga, T.: Design and

Implementation of a Merging Network Architecture for Handshake Join

Operator on FPGA, 2012 IEEE 6th International Symposium on Em-

bedded Multicore SoCs (MCSoC) (2012).

52

Chapter 3

Acceleration by a Hybrid

Approach of HLS and RTL

3.1 Introduction

In the previous chapter, we analyzed the difficulties that software developers

encounter when developing application specific hardware. As a result, we

found there are five perspectives that they should know. Several methods

that have been proposed to eliminate difficulties by virtualizing some of the

perspectives. CoRAM [1] is one such method. CoRAM alleviates hardware

development cost by virtualizing the I/O to external DRAM and processors

from the core logic. This method diminishes the I/O awareness from the five

awarenesses that we proposed in the previous chapter. However, there four

awarenesses remain. The key for eliminating several awarenesses at the same

time is to suppose a specific application field to accelerate.

In this chapter, we propose a method that simplifies the development and

use of dedicated hardware by a slightly different approach from this approach

that tries to eliminate the awarenesses that are necessary for hardware devel-

opment. More specifically, we propose a system that converts StreamSQL,

a stream processing specific language, to hardware. This system takes two

steps. In the first step, we parse the query written in StreamSQL to C code

that intended for high-level synthesis, and the second, the C code compiles

to hardware configuration by an HLS tool. In this way, we enable software

53

engineers to develop hardware with software and relive the cost of porting

the system to various hardware platforms.

A system that synthesizes hardware from StreamSQL has already been

developed [7]. Although this approach restricts the application of product

hardware, the developer needs less knowledge about hardware development

compared to HLS. Because this approach is intended to compile SQL queries

directly to hardware configurations, however, developing such a compiler

would take much effort to support various reconfigurable hardware.

In order to overcome these difficulties of HLS and SQL-to-hardware com-

piler, a method that uses both of these in combination has been proposed [8].

This approach first uses a parser that converts an SQL query to an HLS code

written in C, and then uses an HLS tool that compiles the code to a hard-

ware configuration. Although this method was proposed as a part of a larger

system that uses an FPGA, it successfully reduced the workload of develop-

ment of SQL-to-hardware compiler by giving over the hardware configuration

process to the HLS tool, rather than doing it manually.

Because the HLS tool undertakes the hardware specific configuration, this

method should be able to be applied to other hardware. Therefore, in this

chapter, we try to apply this method to another reconfigurable hardware,

dynamically reconfigurable processor (DRP), and focus on compiling basic

SQL queries that were used in [7] as our primary evaluation.

Our contributions in this chapter are as follows:

• Evaluating how well the SQL-to-C parser extracts DRP’s potential

• Verifying whether the SQL-to-C parser provides an SQL-to-hardware

compiler with portability to DRP by using it in combination with an

HLS tool

• Pointing out what should developers of an SQL-to-C parser should be

aware of when porting the parser to another environment

The organization of this chapter is as follows. In Section 3.2, we introduce

other works that try to generate a hardware configuration from SQL queries.

Before we explain our method, we briefly introduce StreamSQL, which we use

as our description language of the product of our system in Section 3.3. Then,

54

SQL-based stream query

Depends on

platform hardware.
Compiler

Mueller’s approach [5]

Hardware con!guration

Parser Less dependent on

platform hardware.

Our approach

HLS code

SQL-based stream query

Hardware con!guration

Provided by the platform

hardware developer.
HLS tool

Figure 3.1: Comparison of conventional and our approaches.

we provide details of the proposed method in Section 3.4 and evaluate it in

Section 3.5. After we discuss the results in Section 3.6, we will summarize

our work in Section 3.7.

3.2 Related Work

Mueller et al. proposed a system called Glacier, which compiles SQL-based

stream queries to high-throughput hardware configurations [7]. This work

took five basic queries (four of which, Q1 to Q4, are listed in Fig. 3.2) as

application examples, and used FPGA as its hardware platform. It essentially

proposed how to map each of the SQL primitives to a corresponding hardware

template, and then connect them as they are specified in queries provided to

the system. This idea was extended in many ways and became the basis of

several related works such as [5].

One study, however, has proposed an advanced framework for compiling

SQL based continuous query with user-defined C/C++ functions. The sys-

tem realizes 20Gbps bit stream processing on the FPGA [3] and exploits HLS

not only for compiling the user-defined C/C++ functions but also for the C

codes that are parsed from standard SQL queries by their original parser.

Our work tries to apply this parsing method to DRP, jointly using the HLS

55

CREATE INPUT STREAM Trades (

 Seqnr int, -- sequence number

 Symbol string(4), -- valor symbol

 Price int, -- stock price

 Volume int) -- trade volume

SELECT Price,Volume

 FROM Trades

 WHERE Symbol=”UBSN”

 INTO UBSTrades

SELECT Price,Volume

 FROM Trades

 WHERE Symbol=”UBSN” AND Volume>100000

 INTO LargeUBSTrades

SELECT count() AS Number

 FROM Trades [SIZE 600 ADVANCE 60 TIME]

 WHERE Symbol=”UBSN”

 INTO NumUBSTrades

SELECT wsum(Price,[.5,.25,.125,.125] AS Wprice

 FROM (SELECT * FROM Trades

 WHERE Symbol=”UBSN”)

 [SIZE 4 ADVANCE 1 TUPLES]

 INTO WeightedUBSTrades

Q1:

Q4:

Q3:

Q2:

Schema:

Figure 3.2: Example queries and schema of incoming stream.

56

tool bundled to it.

3.3 SQL-Based Stream Processing Language

In our study, we use SQL-based stream processing language as an application

description language. Fig. 3.2 shows some example queries. The schema in

Fig. 3.2 specifies the fields that the stream named “Trades” has. The tuples

from the stream are processed according to the queries (Fig. 3.2, Q1 to Q4)

which consist of the following clauses:

• SELECT clause specifies the fields of the outgoing stream.

• FROM clause specifies the input stream.

• WHERE clause specifies the conditions for selecting the tuples.

• INTO clause specifies the name of the outgoing stream.

Additionally, some queries have aggregation functions in their SELECT

clauses (Q3 and Q4 in Fig. 3.2). Aggregation functions calculate some mea-

sures from a certain range of tuples in the stream, which are specified by

a window written in the FROM clause with its size and sliding interval (e.g.

Q3 counts the number of tuples whose symbol is “UBSN” within 600 s, and

Q4 calculates the weighted sum of the stock prices from the previous four

tuples).

3.4 Our Approach

Generally, a hardware development procedure can be divided into two stages;

the first is to fixes the processing architecture which involves specifying the

I/O or where to pipeline, and the second is to arranges the wires, registers,

and memories so that the circuit meets the requirements such as delay or

resource amount.

As in [8] the parser converts SQL to HLS code written in C, and then the

generated HLS code is compiled to hardware configuration by HLS tool (Fig.

3.1). In other words, the compilation process is divided into two stages:

57

1. Parser: specifies the architecture that is suited to SQL-based stream

processing

2. HLS tool: synthesizes and optimizes hardware configurations

In this study, we use an existing HLS tool that is bundled with the DRP;

therefore, hereafter in this chapter, we look only into the parser.

3.4.1 Generalization of Queries into Abstract Hard-

ware

We first generalize the query structure to abstract hardware modules in order

to enable any queries to be converted into hardware configurations.

First of all, whether or not there are any subqueries inside the query is

determined. To find a subquery, we look inside the FROM clause. If there

is a subquery (Fig. 3.3a), there is going to be two query modules between

the input and output (Fig. 3.3b); otherwise, there will be only one query

module.

The query module is described in Fig. 3.4a. It consists of three modules;,

selection, slide timing, and aggregation. However, if the query does not use

aggregation, the query module only has the selection module. The output of

the selection module is sent out as an output tuple in such case (e.g. Q1 and

Q2). The selection module asserts the “selected” signal if the tuple satisfies

the conditions specified in WHERE clause (e.g. Symbol="UBSN" AND Volume>100000,

in Q2), or otherwise negate it. The slide-timing module monitors the incom-

ing tuples and notifies the aggregation module of the slide timing by asserting

the “slide” signal. The slide timing can be detected by counting the valid

tuples, when tuple-based windowing is used, or by monitoring the timestamp

of the incoming tuples, when time-based windowing is used.

The aggregation module consists of three components, a shift register

(w[0] to w[N-1]), an aggregation unit, and a pre-calculation unit (Fig. 3.4b).

The shift register holds the values that the aggregation unit uses. The number

of registers is determined by dividing the window size by the sliding interval.

When the registers receive the “slide” signal from the slide-timing module,

each register sends its content value to the next register. The aggregation

58

unit collects the values from the shift register and outputs the aggregation

result. The pre-calculation unit updates the content of w[0] whenever there

is a valid input tuple. What the pre-calculation unit does depends on the

aggregation specified in the query. For example, when count(·) is specified

(Q3), the pre-calculation unit increments the value in w[0], initializing it by

zero when the “slide” signal is asserted. The aggregation unit, then, collects

the values in the registers and adds them up.

3.4.2 Mapping Abstract Hardware to C Code

In the generated C code, the main function first calls the function that cor-

responds to the most innermost query (Fig. 3.3c), giving the input tuple

that was received in receive_tuple(·). The query function calls the query

function that corresponds to the next inner query in the return statement

after some operations to the query. The outermost query function returns

the tuple itself after some operations to it. Finally, when the returned tuple

reaches the main function, it becomes an output (send_tuple(·)).
The functionalities of the query modules are mapped to C code as shown

in Fig. 3.4c. The operations such as slide timing module checking the timing

and asserting the “slide” signal, or selection module checking the conditions

specified in the WHERE clause of the query and asserting the “selected” signal,

are mapped as conditions in if statements. This is because whether the

operations in aggregation units are executed depends on these conditions, and

therefore, the operations that depend on these conditions are executed under

the corresponding if statements. If the query does not require windowing, the

operations of the slide-timing module and aggregation module are omitted

in the code.

3.4.3 Shallow Hardware Optimization in C Code

As shown in Fig. 3.3, there is a pipelining directive just before the while loop

in the main function. Thanks to the HLS tool, all a parser developer has to

do in order to pipeline the loop is to write this directive. However, before

we pipeline the loop, some preparations must be made to the code. First,

loops cannot have inner loops. We use another kind of directive to unroll

59

the inner loops. This directive is also specified right before the loop, and

the HLS tool will automatically unroll the loop. The other preparation for

the loop is to design the hardware architecture, which is already done in the

abstract hardware, so that it can be efficiently pipelined. In our code, there

is a “valid” flag in the tuple with the intention of doing this. The “valid” flag

enables the hardware to receive and send tuples at a constant speed, which

leads to making the pipelined loop efficient.

Another optimization done in the code is to burst access the memory.

The DRP evaluation kit we used does not have a network interface, it has

to send and receive tuples to and from the external DRAM. The HLS tool

that we used has a featured function (which is hidden in receive_tuple(·)
and send_tuple(·)) to do this. This feature requires a predictive numbers of

input and output tuples; therefore, the optimization that we made in order

to efficiently pipeline also profits from this optimization. Note that this is

the only optimization we made that is specific to DRP.

3.5 Evaluation

We compared the performance of the codes that were directly written in

HLS C, and the codes generated by our parser from Q1 to Q4 (Fig. 3.5). We

did not optimize the codes directly written in HLS C because optimization

would be difficult for software engineers who generally do not have hardware

development skills. Because the intended users of our parser are those who

do not have hardware development knowledge, it is fairer to compare with

non-optimized HLS codes.

Synthesis was done by the DRP tool which is a development tool suite

bundled with the DRP evaluation kit. The synthesis tool included in theDRP

tool is based on CWB which was developed by NEC [10]. The generated C

codes are fully capable of synthesizing into hardware configurations unless

the resource usage exceeds what is available on DRP [9]. DRP can be driven

at various clock speeds and the DRP tool has a functionality to search the

optimal clock speed for the application. Each result shown in Fig. 3.5 was

measured at such clock speed.

For reference, we measured the throughput of the Intel Core i5-2520M

60

processor (2.5GHz) running Q1 (horizontal line in Fig. 3.5). The figure shows

that the throughput of HLS C codes written without hardware development

knowledge is about the same as that of the CPU. When using our parser,

the throughput was more than twice as fast as the CPU. However, when we

consider the power efficiency, assuming that the DRP consumes 500 mW and

CPU 5 W, the DRP was 24 times more efficient than the CPU.

As long as the queries consist of SELECT, FROM, WHERE, and INTO clauses

and the hardware resources are sufficient, the DRP’s throughput will remain

as high as shown in Fig. 3.5 because the system can be pipelined as shown in

Fig. 3.3. However, when a query contains GROUP BY or JOIN clauses, which

are outside the scope of this work, the throughput tends to go down vastly. [7]

suffers from reduction of throughput when dealing with the GROUP BY clause

because it requires a CAM to implement a grouping functionality. JOIN is

a very difficult operation that many works have been seeking its efficient

implementation in hardware [2, 5, 7]. Building translation functionalities of

these clauses into our system is an important part of our future work.

3.6 Discussion

One metric that signifies the usage of a parser, besides the absolute per-

formance of the resulting hardware, is how well the hardware’s potential is

extracted. To evaluate such significance, we measured the bandwidth usage

of the generated hardware. Table I shows how efficiently the input band-

width of DRP was used. Input bandwidth is the most critical limitation that

constrains the overall throughput. Therefore, the input bandwidth usage

can be a good barometer for evaluating how efficiently the hardware is used.

According to the table, over 90% of the potential of DRP was extracted by

using the parser, whereas only 50% of the potential was extracted without

it.

The cost-consuming and hardware-dependent low-level operations such

as wiring or scheduling were delegated to the HLS tool. There were only

three optimizations that had to be done by the parser that involve hardware

development knowledge: 1) specifying which loop to be pipelined, 2) enabling

the memory burst accessing option, and 3) providing the basic architecture in

61

Table 3.1: Usage of input bandwidth.

Query Hand written C SQL to C Parser

Q1 49.6% 90.8%

Q2 50.4% 91.7%

Q3 49.8% 96.5%

Q4 33.5% 96.8%

order for the pipelining and memory burst accessing to be effective. Among

these, the burst memory accessing option was the only optimization that was

hardware specific in the architectural level. This means that the parser can

be used in various hardware architectures as long as the HLS tool provides

the abstracting function for controlling the I/O. Because a controller of the

I/O is one of the most difficult component to design in lower levels and

therefore requires hardware development knowledge and highly depends on

the hardware architecture, it can be said that the parser is providing a good

portability.

3.7 Conclusion

In this chapter, we showed that the concept of SQL-to-C HLS based com-

piler, proposed in [8] using an FPGA, was effective on DRP which features

a dynamically reconfigurable architecture. The HLS C code was compiled to

the hardware configuration by a state-of-the-art proprietary HLS tool that

is customized to DRP. The results of the evaluation show that the parser

enables software engineers to develop stream processing hardware that is 24

times more power efficient than a common CPU, or twice as fast as directly

written HLS C code without any hardware development knowledge.

The SQL-to-C parser provided portability to the SQL-to-hardware com-

piler to work on DRP, by delegating the cost-consuming low-level optimiza-

tion of DRP to the HLS tool, and using the high level function for controlling

the I/O, which is dependent on DRP.

The optimizations except the I/O done by the parser do not depend on

62

DRP at the architectural level as long as the synthesized hardware configu-

ration does not violate the hardware limitation. Therefore, the only aspect

of DRP that a developer of a SQL-to-C parser should be aware of is the I/O.

This tendency can be generalized to various kinds of reconfigurable hardware.

The limitation of this work is that the sample queries we evaluated were

rather simple. We will improve our parser and consider the larger or more

complex queries that include grouping functionality.

63

Query B Query Ain_tuple
tuple

out_tuple

SELECT wsum(Price,[.5,.25,.125,.125]) AS Wprice

 FROM (SELECT * FROM Trades

 WHERE Symbol=”UBSN”)

 [SIZE 4 ADVANCE 1 TUPLES]

 INTO WeightedUBSTrades

Query A

Query B

Trades queryA (Trades in_tuple)

{

 tuple = some_query_processingA(in_tuple);

 return tuple;

}

Trades queryB (Trades in_tuple)

{

 tuple = some_query_processingB(in_tuple);

 return queryA(tuple);

}

void main()

{

 /* Pipeline loop */

 while (1) {

 Trades in_tuple = receive_tuple();

 out_tuple = queryB(in_tuple);

 send_tuple(tuple)

 }

}

(a)

(b)

(c)

Figure 3.3: C function calls for nested queries.

64

Slide timing

module

Selection

module

Aggregation

module

slide

some

�elds

(time)

in_tuple selected
out_tuple

Query module

valid

(a)

(b)

(c)

<Tuple type> queryX (<Tuple type> in_tuple)
{
 if (in_tuple.valid) {
 if (sliede=window_slide_check(valid[,time])) {
 out_val = aggregate(w);
 slide_window(w);
 }
 if (selected=select()) {
 w[0] = pre_calc(w[0],slide,<some fields>);
 }
 }
 out_valid = <slide|selected> (*)
 out_tuple = pack(out_valid,out_tuple);
 return <out_tuple|queryY(out_tuple)>;
}

Done in slide timing module.

Done in selection module.

Done in aggregation module.

(*) slide is selected if windowing is required,

otherwise, selected is selected.

slide

Aggregate

w[0] w[1] w[2] w[N-1]

Pre-

calc.
valid

some �elds

Aggregation module

out_val

Figure 3.4: Query module architecture and its code.

65

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Naive C w/o

HW knowledge
SQL to C Parser

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Q1
Q2
Q3
Q4

Q1 (CPU)

Figure 3.5: Throughput comparison between naive C written without hard-

ware development knowledge and parsed C.

66

Bibliography

[1] Eric S Chung, James C Hoe, and Ken Mai. Coram: an in-fabric mem-

ory architecture for fpga-based computing. In Proceedings of the 19th

ACM/SIGDA international symposium on Field programmable gate ar-

rays, pages 97–106. ACM, 2011.

[2] E. S. Fukuda, H. Kawashima, H. Inoue, T. Fujii, K. Furuta, T. Asai,

and M. Motomura. C-based adaptive stream processing on dynamically

reconfigurable hardware: a case study on window join. In Proceedings

of the 9th international conference on Reconfigurable Computing: archi-

tectures, tools, and applications (ARC), 2013.

[3] H. Inoue, T. Takenaka, and M. Motomura. 20Gbps C-based complex

event processing. In Proceedings of the 2011 21st International Confer-

ence on Field Programmable Logic and Applications (FPL), 2011.

[4] M. Kitsuregawa. Challenge for info-plosion. In Proceedings of the 18th

international conference on Algorithmic Learning Theory (ALT), 2007.

[5] T. Miyoshi, H. Kawashima, Y. Terada, and T. Yoshinaga. A coarse grain

reconfigurable processor architecture for stream processing engine. In

Proceedings of the 2011 21st International Conference on Field Pro-

grammable Logic and Applications (FPL), 2011.

[6] M. Motomura. A dynamically reconfigurable processor architecture. Mi-

croprocessor Forum, 2002.

[7] R. Mueller, J. Teubner, and G. Alonso. Streams on wires - a query

compiler for FPGAs. Proceedings of the VLDB Endowment, Vol. 2,

No. 1, 2009.

67

[8] T. Takenaka, M. Takagi, and H. Inoue. A scalable complex event pro-

cessing framework for combination of SQL-based continuous queries and

C/C++ functions. In Proceedings of the 2012 22nd International Con-

ference on Field Programmable Logic and Applications (FPL), 2012.

[9] T. Toi, T. Awashima, M. Motomura, and H. Amano. Time and space-

multiplexed compilation challenge for dynamically reconfigurable pro-

cessors. In IEEE International Midwest Symposium on Circuits and

Systems, 2011.

[10] K. Wakabayashi and B. C. Schafer. ”All-in-C” Behavioral Synthesis and

Verification with CyberWorkBench, pp. 113–127. Springer Netherlands,

2008.

68

Chapter 4

Acceleration by I/O Caching

4.1 Introduction

In Chapter 2 and 3, we discussed the issue of making reconfigurable hardware

easier to be utilized by software programmers. In this chapter, we discuss

the other issue involved in reconfigurable hardware when deploying it in data

centers: the architecture of a data center with reconfigurable hardware is not

fully established yet. As we discussed in Chapter 1, where to place the re-

configurable hardware in a data center is less significant for applications that

require high throughput in comparison with applications that require low

latency. For running low latency applications in data centers with recon-

figurable hardware, it is better to place the reconfigurable hardware at the

network interface of the server computers. Using the host general purpose

processor as necessary will enable the system to be applicable to versatile

applications.

Based on this architecture, we propose a new way of using reconfigurable

hardware in data centers. Other works that uses reconfigurable hardware

placed at the network interface tries to run different applications or func-

tionalities between the reconfigurable hardware and the host general purpose

processor. Unlike them, our method accelerates the application running on

the host general purpose processor by taking advantage of functionalities

and data locality of the application and caching them at the reconfigurable

hardware.

69

We chose memcached as an example application of our method. Mem-

cached has been widely accepted as a technology to improve response speed

of web servers by caching data on DRAMs in distributed servers. Because

of its importance, acceleration of memcached has been studied on various

platforms. Among them, FPGA looks the most attractive platform to run

memcached, and several research groups have tried to obtain much higher

performance than that of CPU out of it. Difficulties encountered there,

however, is how to manage large-sized memory (gigabytes of DRAMs) from

memcached hardware built in an FPGA. Some groups are trying to solve

this problem by using an embedded CPU for memory allocation and another

group is employing an SSD. Unlike other approaches that try to replace mem-

cached itself on FPGAs, our approach augments the software memcached

running on the host CPU by caching its data and some operations at the

FPGA-equipped network interface card (NIC) mounted on the server. The

locality of memcached data enables the FPGA NIC to have a fairly high hit

rate with a smaller memory. In this chapter, we describe the architecture

of the proposed NIC cache, and evaluate the effectiveness with a standard

key-value store (KVS) benchmarking tool. Our evaluation shows that our

system is effective if the workload has temporal locality but does not handle

workloads well without such characteristic. We further propose methods to

overcome this problem and evaluate them. As a result, we estimate that the

latency improved by up to 3.5 times over software memcached running on a

high performance CPU.

4.2 Key-value Stores in Data Centers

Web service providers that have tremendous amounts of users and other

information are eager to facilitate new technologies that enable their servers

to handle more data traffic. One such technology employed by many web

service providers is key-value stores (KVSs). A KVS holds data (values)

with keys uniquely assigned (key-value pairs; KVPs), and sends them out

as the data (value) is requested with the corresponding key. For its speed

of finding the requested data in contrast to traditional relational database

management systems (RDBMSs), many web service providers are now using

70

KVS databases such as DynamoDB at Amazon [1], BigTable at Google [2],

memcached at Facebook [3], and many others. Memcached [5] is a technology

that reduces the latency of data retrieval by storing KVPs in distributed

servers’ memories instead of fetching from the hard drives of database servers.

Its simple data structure and computation have led to its wide adoption by

various web service providers.

Memcached is used not only by Facebook, but also by a number of ma-

jor web service providers such as Wikipedia and YouTube [5]. According to

Facebook’s research on their own memcached workloads, they use hundreds

of memcached servers [3, 4]. In view of such extensive use, improving the

memcached performance would have a large impact on web services’ response.

In fact, researchers have investigated the suitability of various hardware plat-

forms for running memcached, from multiple low power CPUs [6–8] to many-

core processors [9] and FPGAs [10]. Meanwhile, FPGA-based memcached

systems are outperforming high performance CPUs such as Intel® Xeon®

by an order of magnitude [11].

Although these efforts have improved the performance of memcached,

major challenges remain. One such challenge is that it is difficult for FPGAs

to efficiently manage a large memory size. Memcached servers usually have

a few dozen gigabytes of memory, and such a memory space is too large for

an FPGA to efficiently manage [12]. One group is trying to handle large

memory size by utilizing a CPU core that is embedded in the FPGA [11].

The FPGA invokes the CPU to allocate or reallocate some blocks in the

memory and stores data there. Another group employed an SSD to enlarge

the memory space using a DRAM as a cache [13].

In this chapter, we propose a method that makes possible a low latency

hardware memcached system with less memory than others require. Our

method caches the subset of data stored in software memcached running on

the host CPU at the network interface card (NIC) equipped with an FPGA

and a DRAM memory. When the server receives a request from a client,

the NIC tries to retrieve the data within the DRAM and sends it back if

the data is found. If not, the NIC passes the request to the host CPU and

the CPU executes the usual memcached operation. Since memcached data

has locality, the NIC requires only a fraction of the amount of memory that

71

the host server has. Furthermore, the commands the NIC cache does not

support can be delegated to the host CPU; therefore only the frequently

used memcached commands have to be supported on the NIC.

The contributions of this chapter are as follows:

• We proposed a method that reduces the delay of memcached by caching

the memcached data at the NIC mounted on the server.

• We explained how the subset of memcached functionalities should be

implemented on the FPGA equipped NIC in order to maintain data

consistency between the NIC and the host CPU.

• We verified the improvement of the performance with a standard eval-

uation tool which is capable of evaluating various KVSs.

• We apply least frequently used (LFU) cache replacement algorithm that

has slightly higher hit rate than least recently used (LRU) algorithm for

workloads with Zipfian distribution. However LRU is a better choice

when taking the hardware implementation cost into account.

• We analyze the effect of our system in relation to the workloads’ char-

acteristics in detail.

• We propose a method that enables a large size of cache on the NIC

with small amount of block memory on the NIC’s FPGA.

Although we focus on proving the effectiveness of our NIC caching archi-

tecture with memcached, it is important to note that this architecture can

be applied to many other server applications that require lower latency as

long as the data has temporal locality.

4.3 Background

4.3.1 Memcached

Memcached is a kind of KVS database that caches data on memories of

distributed servers in the form of key-value pairs. As Fig. 4.1 shows, mem-

cached servers store the subset of data stored in the database servers, which

72

Web server

HDD HDD

Database servers

User

CPU

DRAM

CPU

DRAM

CPU

DRAM

Memcached servers
First access

Later access

Figure 4.1: The operation of memcached.

usually use hard drives, in order to allow faster data access from the web

server. Memcached servers often have a few dozen gigabytes of memory each

and run in a cluster of several hundred servers. Data are not stored in the

memcached server at the beginning, and the web server has to get the data

Table 4.1: Memcached commands
Command Operation

SET Store a KVP.

ADD Store a KVP if the key is not found.

REPLACE Replace a KVP if the key is found.

APPEND Append data to a stored value.

PREPEND Prepend data to a stored value.

CAS Overwrite a value if the KVP is unchanged since last reference.

GET Retrieves a value with a key.

GETS Get a CAS identifier while retrieving a value with a key.

DELETE Removes an KVP.

INCR/DECR Increment or decrement a value.

STATS Get an report of the memcached server statistics.

73

Memcached server

CPU

DRAM

FPGA

DRAM

Network

Cache part
of the data

SET

GET

DELETE

REPLACE

ADD

NIC

Cache
part of the
functionalities

Figure 4.2: The image of the proposed method.

from the database servers. The web server sends the data back to the user

and also sends a SET request with a paired key (250 bytes or smaller) and

value (1 MB or smaller) to memcached to store the data. When the web

server needs the same data later, it sends a GET request with the key to the

memcached server, and the memcached server returns the value to the web

server. Data that are not accessed frequently on the memcached server are

evicted when the capacity is full. If the web server sends a GET request for

data that has been already evicted, the memcached server notifies the web

server that a cache miss has occurred. The web server will then check the

database server and SET the data to the memcached server again.

Table 4.1 is a list of memcached commands. GET, SET and DELETE

are the commands that are mainly used, and GET is the most frequently

used command among them. According to a paper that reports the details

of the memcached workloads of Facebook [3], the ratio of GET, SET and

DELETE is 30:1:14 (exact ratio of DELETE not being provided in the paper,

we estimated it visually from the chart). Therefore, the investigations we look

through in Section 4.3.2 usually support only the GET, SET and DELETE

commands.

74

T
ab

le
4.
2:

D
es
cr
ip
ti
on

of
Y
C
S
B

w
or
k
lo
ad

s.
(O

ri
gi
n
al
ly

sh
ow

n
in

[1
5]
.)

W
o
rk

lo
a
d

O
p
e
ra

ti
o
n
s

R
e
co

rd
se
le
ct
io
n

A
p
p
li
ca

ti
o
n
e
x
a
m
p
le

A
–U

p
d
at
e
h
ea
v
y

R
ea
d
:
50
%

Z
ip
fi
an

S
es
si
on

st
or
e
re
co
rd
in
g
re
ce
n
t
ac
ti
on

s
in

a
u
se
r
se
ss
io
n

U
p
d
at
e:

50
%

B
–R

ea
d
h
ea
v
y

R
ea
d
:
95
%

Z
ip
fi
an

P
h
ot
o
ta
gg
in
g;

ad
d
a
ta
g
is
an

u
p
d
at
e,

b
u
t
m
os
t
op

er
at
io
n
s

U
p
d
at
e:

5%
ar
e
re
ad

ta
gs

C
–R

ea
d
on

ly
R
ea
d
:
10
0%

Z
ip
fi
an

U
se
r
p
ro
fi
le

ca
ch
e,

w
h
er
e
p
ro
fi
le
s
ar
e
co
n
st
ru
ct
ed

el
se
w
h
er
e

(e
.g
.
H
ad

o
op

)

D
–R

ea
d
la
te
st

R
ea
d
:
95
%

L
at
es
t

U
se
r
st
at
u
s
u
p
d
at
es
;
p
eo
p
le

w
an

t
re
ad

th
e
la
te
st

st
at
u
se
s

In
se
rt
:
5%

E
–S

h
or
t
ra
n
ge
s

S
ca
n
:
95
%

Z
ip
fi
an

/U
n
if
or
m

T
h
re
ad

ed
co
n
ve
rs
at
io
n
s,
w
h
er
e
ea
ch

sc
an

is
fo
r
th
e
p
os
ts

in
a

In
se
rt
:
5%

gi
ve
n
th
re
ad

(a
ss
u
m
ed

to
b
e
cl
u
st
er
ed

b
y
th
re
ad

id
)

75

4.3.2 Related Work

Berezecki et al. evaluated the performance of memcached running on Tilera’s

TILEPro64 processor, which can allocate computations to its 64 cores [9].

Examining several configurations of cores running operations such as Linux

kernel, network operations and others, the throughput per watt attained a

maximum 2.4-fold increase over Xeon. However, the latency remained the

same or worsened slightly from Xeon’s 200 - 300 µs to TILEPro64’s 200 - 400

µs.

Chalamalasetti et al.’s work was the first to try to utilize FPGA for accel-

erating memcached [10]. The system mainly consists of two parts: a network

processing part and a memcached application part. The network processing

part extracts memcached data from incoming packets and gives them to the

memcached application part, and also does the reverse. Receiving the data

from the network processing part, the memcached application part calculates

hashes from the keys in order to determine the memory address at which the

KVPs are stored and writes to or read from the memory. The performance

of memcached improved dramatically in this scheme: throughput per watt

attained 4.3-fold over Xeon and the latency became 2.4 to 12 µs.

Blott’s group further improved the performance of memcached running

on an FPGA by improving the UDP offload engine and adopting dataflow

architecture [11]. They achieved over 15-fold higher throughput per watt

than a Xeon and a latency of 3.5 to 4.5 µs. This work also features a CPU

for allocating the memory. Their system stores the key in the block RAM

and value in the external DRAM. The system we propose in this chapter is

different from this: we store only the tag in the block RAM and store the key

and the value to the external DRAM. This enables us to store more KVPs

in the external DRAM, and as we propose in Section 4.7, this will further be

extended to hash table compression method.

Another approach was proposed by two groups almost coincidently [7, 8].

Through dynamic analysis of memcached codes, they found that instruction

cache misses or low branch prediction success rates caused by the frequent

call of the network protocol stack, kernel and some library codes was the

bottleneck. Their approach to get rid of this bottleneck was to replace the

76

network process and some of the memcached process (GET request handling)

software codes with hardware and integrate it into an SoC with a CPU core.

This method was evaluated on an FPGA that had an embedded CPU core

and yielded 2.3 to 6.1-fold higher throughput per watt than a Xeon. Our

method is close to [7] and [8] in the sense that we execute part of the mem-

cached process on hardware. However, we do not share the memory between

the memcached hardware and the CPU, and thus the memory control of our

method is simpler.

To gain a larger storage size on hardware memcached, Tanaka and Kozyrakis

employed a solid state drive (SSD) in their FPGA based system [13]. Their

approach is to store KVPs in the SSD on the FPGA board, using the DRAM

on the same board as a cache. They achieved 14-fold higher throughput, 5-

to 60-fold low latency and 12-fold higher throughput per watt than a Xeon.

Recently, a commercial memcached appliance that can be used in practice

has been developed [14]. This appliance achieved 9.7-fold higher throughput

than a Xeon by using a CPU and multiple FPGAs while the latency was 500

µs to 1 ms, which is larger than for a Xeon. Its throughput per watt has not

been publicly announced.

4.4 Concept of NIC Cache

The basic idea of our method is to cache part of memcached server’s data

and functionalities to the NIC mounted on the same computer. According

to Facebook’s investigation into their own memcached workloads, there is

some locality of access to their data [3]. On top of that, Facebook’s investi-

gation also indicates that among all memcached commands, SET, GET and

DELETE account for most of the requests. This means that reducing the

processing latency of only frequently accessed data should have a large im-

pact on the web server’s performance. The nearest place to the web server in

the server computer on which memcached is running is the network interface.

Therefore we try to efficiently reduce the latency by caching frequently used

data and functionalities (SET, GET and DELETE) at the NIC and leaving

the less frequently used data and functionalities to be handled by the host

CPU. The NIC we assume to use has a fast connection to the network (sev-

77

eral tens of Gbps), an FPGA, gigabytes of memory, and a fast connection to

the host CPU (Fig. 4.2).

We assume our system to behave as follows. However, this is an example

of adopting the FPGA NIC for memcached, and the behavior can be changed

and adapted to various applications.

SET: The NIC stores the KVP to its DRAM and sends back a reply

notifying the web server whether the KVP was properly stored. If a KVP

already stored in the DRAM becomes evicted, a SET request with the evicted

KVP is sent to the host CPU (write-back, write-no-allocate).

GET: If the key in the request is found in the NIC, the NIC returns a

reply message with the corresponding value to the web server. Otherwise,

the NIC sends the request to the host CPU, and the CPU searches for the

key and returns it to the NIC. After the KVP is cached to its DRAM, it is

sent back to the web server (read-allocate). If the key was not found at the

CPU, it returns a reply notifying the web server that the key did not exist.

DELETE: If the key in the request is found in the NIC, it is invalidated

and the request is sent to the host CPU. The CPU invalidates the data and

returns a reply to the web server notifying that the KVP was successfully

deleted.

4.5 Cache Simulation

In this section, we evaluate the NIC cache concept over software simulation in

order to estimate its effectiveness. We implemented a cache simulator that

behaves as mentioned in Section 4.4. Test workloads were generated with

Yahoo! Cloud Serving Benchmark (YCSB), a standard benchmarking tool

for KVS [15]. YCSB, cache simulator and memcached was placed as shown

in Fig. 4.3. Requests generated by YCSB are sent to the cache simulator

YCSB NIC cache

simulator
memcached(Workload

 generator)

Figure 4.3: Connection of software modules.

78

In
s
e

rt
io

n
 o

rd
e

r
o

f
k
e

y
s
 [
K

]

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Request count [K]

Workload A

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Request count [K]

Workload B

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Request count [K]

Workload C

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Request count [K]

Workload D

In
s
e

rt
io

n
 o

rd
e

r
o

f
k
e

y
s
 [
K

]

Figure 4.4: Key access distribution for the first 5,000 requests.

and the cache simulator processes the requests as described in Section 4.4,

backed up by real memcached.

4.5.1 Testing Tool

YCSB provides workloads that simulate various KVS use cases. Table 4.2,

quoted from [15], shows the characteristics of the workloads. Each workload

is characterized by the ratio of commands and the record selection distribu-

tion. YCSB has load phase, which sends SET requests for all the keys for

warm up, and transaction phase, which sends requests with the characteris-

tics given in Table 4.2. All the results provided in this chapter are measured

during the transaction phase.

Read, update and insert operations in the table correspond to mem-

cached’s GET, REPLACE and ADD commands respectively. In our ex-

periment, however, we use SET for both update and insert operations. The

79

 1000

 10000

 100000

 1e+06

 1 10 100

N
u

m
b

e
r

o
f
a

p
p

e
a

ra
n

c
e

 (
a

.u
.)

Key appearance interval in command count

Workload A
Workload B
Workload C
Workload D

Figure 4.5: Appearance interval of same keys for all workloads.

difference between SET and update and insert is that update (REPLACE)

and insert (ADD) check whether or not the data is already stored, and decide

to store the data accordingly. Since we have to access the memory before we

know whether the same key is stored, we used SET in place of REPLACE

and ADD. The delay will be almost the same because checking whether the

data is stored or not can be done in parallel with other operations. Regarding

Workload E, we do not use it because memcached does not support the scan

operation. Thus we use Workload A to D for our evaluation.

There are two record selection distributions: Zipfian and Latest. Zipfian

is a distribution in which certain records are popular independent of their

insertion order. An intuitive example is Wikipedia, where certain entries

such as “Moore’s Law” or “Transistor” are frequently viewed even though

they were created years ago. On the other hand, Latest is a distribution in

which the records added recently are the most popular ones. An example of

Latest selection is Facebook’s user updates where people mainly view their

friend’s recent posts.

Fig. 4.4 shows the access to each key for the first 5,000 requests. The

x-axis is the number of requests, which approximately represents the time,

while the y-axis shows the keys ordered according to their first appearance.

You can see some stripes which are the popular keys in the Zipfian distribu-

80

 0.01

 0.1

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a

ti
o

 f
ro

m
 t
o

ta
l
re

q
u

e
s
ts

Cumulative ratio of keys from total

Workload A
Workload B
Workload C
Workload D

Figure 4.6: Cumulative ratio of keys.

tion (Workload A to C), and the key that appeared the last (the top in the

chart) is intensively requested in Latest distribution (Workload D).

Fig. 4.5 shows that Workload D is unique in terms of the key appearance

interval. The x-axis denotes the appearance interval of the same keys while

the y-axis denotes the total number of each appearance interval. This figure

signifies that Workload D has relatively less intervals between the same keys

compared to Workload A to C.

81

Miss rate per type (%)

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

W
o

rk
lo

a
d

 A
W

o
rk

lo
a

d
 B

W
o

rk
lo

a
d

 C
W

o
rk

lo
a

d
 D

(a
)

M
is

s
ra

te
 f

o
r

G
E

T
 r

eq
u
es

ts
 w

it
h

 F
IF

O
 r

ep
la

ce
m

en
t

p
o

li
cy

.

Miss rate per type (%)

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

W
o

rk
lo

a
d

 A

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

W
o

rk
lo

a
d

 B

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

W
o

rk
lo

a
d

 C

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

W
o

rk
lo

a
d

 D

(b
)

M
is

s
ra

te
 f

o
r

G
E

T
 r

eq
u
es

ts
 w

it
h
 L

R
U

 r
ep

la
ce

m
en

t
p
o

li
cy

.

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

Miss rate per type (%)

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0 1
/3

2
1

/1
6

1
/8

1
/4

1
/2

S
iz

e
 r

a
ti
o

 o
f
N

IC
 c

a
c
h

e
 t
o

 m
e

m
c
a

c
h

e
d

1
-w

a
y

2
-w

a
y

4
-w

a
y

8
-w

a
y

F
u

ll
a

s
s
o

c
ia

ti
v
e

W
o

rk
lo

a
d

 A
W

o
rk

lo
a

d
 B

W
o

rk
lo

a
d

 C
W

o
rk

lo
a

d
 D

(c
)

M
is

s
ra

te
 f

o
r

G
E

T
 r

eq
u

es
ts

 w
it

h
 L

F
U

 r
ep

la
ce

m
en

t
p

o
li

cy
.

F
ig
u
re

4.
7:

M
is
s
ra
te

fo
r
G
E
T

re
q
u
es
ts

w
it
h
va
ri
ou

s
re
p
la
ce
m
en
t
p
ol
ic
ie
s.

82

Fig. 4.6 shows the appearance of keys in the form of cumulative distribu-

tion function (CDF). The x-axis is the ratio of the keys from the total keys,

arranged in ascending order of their appearance ratio from total requests.

The y-axis is the cumulative ratio of keys from total requests. Fig. 4.6 indi-

cates that Workload D differs from Workload A to C also in the characteristic

of key appearance. In the figure, the right ends of Workload A to C’s graphs

becomes almost vertical. This means that there is a large gap between the

appearance probabilities of the popular keys, which make the dense areas in

Fig. 4.4, and that of the rest of the keys.

4.5.2 Simulation Results

Fig. 4.7a, b and c show the miss rates for GET requests at the NIC cache

with various associativity and capacity for FIFO, least recently used (LRU)

and least frequently used (LFU) replacement algorithms respectively. The x-

axis is the relative ratio of the NIC cache capacity to the memcached capacity

running on the host CPU. We set the memcached capacity to 512MB and

evaluated the cache size parameter from 1/32 to 1/2. The actual cache size

we implemented, which we will discuss in Section 4.6, was 128 MB and this

is 1/4 of the memcached capacity. (Rather than the absolute cache size, the

ratio of the cache size to the host memcached size determines the miss rate.)

Apparently, the difference in miss rates among the three algorithms is

very small. For Workload A to C, the miss rates are a few percent less with

LRU and LRU than with FIFO when the capacity of the NIC cache is small.

You can also see that Workloads A to C, which use the Zipfian distribu-

tion, have similar curves, while Workload D with Latest distribution have

linearly decreasing miss rates as the NIC cache’s capacity increases. (For

better visibility of this, Fig. 4.8 features the miss rates for small cache sizes

for Workload A with the three different algorithms.) As we mentioned ear-

lier, workloads with Zipfian distribution have specific keys that are popular

independently from when the key has recently been called. This makes us

think that LFU, which tries to leave the popular keys in the cache, is a good

solution for reducing the cache miss rate. However, LFU had larger, while

the difference was still very small, effect than LRU only when the cache size

83

was small (1/32 or 1/16 of memcached) and the cache associativity was rel-

atively small (2-way or 4-way). This ineffectiveness comes from the very few

number of popular keys in Workload A to C: The LFU has effect only when

the ratio of the popular keys is relatively large in the cache.

We also carried out an experiment with a read-no-allocate policy, which

means that the NIC does not cache the KVP on receiving the GET reply from

the host CPU. This policy has the advantage of keeping the data consistency

between the NIC cache and the host CPU easier. If a GET miss for a

certain key occurs at the NIC and the subsequent request is a SET for the

same key, the KVP set by the SET request at the NIC can be overwritten

by the GET reply for the GET miss from the host CPU. This problem

can be avoided in either by two ways: sending request from the NIC to

the host CPU synchronously, or employing a read-no-allocate policy. Since

synchronous requests can lead to an increase in average latency, employing

a read-no-allocate policy can be beneficial if the miss rate at the NIC does

not increase.

We found that the miss rate increased by less than a few percent for

Workload A, B and D. For Workload C, however, the miss rate increased by

more than ten percent (Fig. 4.9). This degradation comes from the command

mix of Workload C. Unlike Workload A, B and D, Workload C does not send

SET requests, so once a popular key is evicted from the NIC during the load

phase, it cannot store it again in the transaction phase, and thus the miss

rate rises.

4.6 Hardware Design

To prove the proposed method works correctly, we designed and implemented

the system on an FPGA NIC. Note that the system described below is meant

for making sure that the method we proposed above works under a simple

one-to-one connection between the server and the client.

Although the cache has a relatively low hit rate for Workload C, as our

initial implementation, we implemented the system with a read-no-allocate

policy for its simple implementation. Fig. 4.10 shows the architecture of the

NIC cache. The circuit implemented in the FPGA consists of five parts as

84

 54

 56

 58

 60

 62

 64

 66

1/32 1/16 1/8

M
is

s
 r

a
te

 (
%

)

Size ratio of NIC cache to memcached

1-way
2-way
4-way
8-way

Full associative

F
IF

O F
IF

O

F
IF

O

L
R

U

L
R

U

L
R

U

L
F

U

L
F

U

L
F

U

Figure 4.8: Miss rates for small cache sizes for Workload A with FIFO, LRU,

and LFU cache algorithms.

described below:

Incoming packet handler: Non-memcached packets received from the

network side are sent to the CPU without any operations so that the CPU

could run not only memcached but also other server applications. On receipt

of a memcached packet, the command, the key and the value are extracted

from the packet and sent to the memory controller, hash calculator and the

hash table. If the command is a GET and the memory controller returns

a miss, the packet is sent to the CPU. If the memory controller returns a

hit for a GET command, the packet is discarded. If the command is a SET

or a DELETE, the packet is sent to the host CPU regardless of hit or miss

returned from the hash table.

Outgoing packet handler: Outgoing packet handler does three things.

First, it creates a packet in reply to a GET request using the key and the

value given from the memory controller. Second, it receives memcached or

other packets from the host CPU. Finally, it merges the packets from the

two data sources (memory controller and the host CPU) and sends them

out to the network. As mentioned in the beginning of this section, in our

initial implementation, we do not cache data from the reply packets so as to

simplify our implementation. Improving this behavior is a part of our future

work.

85

 0

 20

 40

 60

 80

 100

1/32 1/16 1/8 1/4 1/2

M
is

s
 r

a
te

 (
%

)

Size ratio of NIC cache to memcached

Read-no-allocate
Read-allocate

Figure 4.9: Miss rates with read-allocate and read-no-allocate for Workload

C.

Hash calculator: Hash calculator receives a key from the incoming

packet handler and calculates a hash with Jenkins’s lookup3 function [16].

It produces a 32-bit hash from the key.

Hash table: Hash table manages where in the DRAM memory to store

the KVP. More detailed structure is given in Fig. 4.11. The top 15 bits of

the hash given from the hash calculator becomes the index of the hash table,

and the lower 17 bits are written to the empty entry in the row, pointed

to by the index, as a tag. The table is 8-way associative with a pseudo

LRU replacement algorithm. Although LFU have a slightly better hit rate

for small size and low associativity cache, we chose to implement pseudo

LRU due to its lower implementation cost. The address of the memory is

retrieved uniquely from the column and the row where the tag is stored. The

key and the value are stored at the location on the memory where the address

points. Memcached originally supports variable sizes of keys and values, but

since YCSB supports fixed key and value sizes by default, we use fixed sizes.

According to Facebook’s investigation, key sizes are mostly less than 50 bytes

and value sizes are less than a few hundred bytes. Therefore, we set the key

size and the value size to 64 bytes and 448 bytes respectively to keep our

hardware implementation of memory addressing simple by setting the size

of the KVP to 512 bytes, which is a power of two. If the command given

86

Incoming packet handler

Outgoing packet handler

Memory

Controller

Hash table

Hash

Calculator

DRAM

read

write

address

wr_data

rd_data

address

hit

key

hash

cmd

key value

cmd key value

hit

Figure 4.10: NIC cache architecture.

valid valid valid

index

associativityaddress

FPGA DRAM

valuetag tag tag key

Figure 4.11: Correspondence of the hash table and the value storage.

from the incoming packet handler is a SET, the hash table stores the tag in

a certain entry, setting its valid flag. If the command is a GET, the hash

value is looked up in the hash table and hit/miss information is sent to the

memory controller. Both in the case of SET and GET, the calculated address

is sent to the memory controller. DELETE invalidates the valid flag if the

hash value stored in the entry matches the hash value given from the hash

calculator. value to the memory at the address given from the hash table. If

the command is a DELETE, it does nothing.

Memory controller: The memory controller receives the command, the

key and the value from the incoming packet handler, and also receives the

address and the hit/miss information from the hash table. If the command

is a GET, it sends a read signal and the address to the memory. Then the

two keys from the incoming packet handler and the memory are compared to

see whether they match. Since identical hash values can be generated from

87

Figure 4.12: FPGA NIC mounted on a memcached server.

different key strings, the judgment of hit/miss at the hash table is uncertain.

The keys should be checked here so as to make sure they are really identical.

Provided that the keys match, the memory controller sends the key and

the value to the outgoing packet handler; otherwise it does nothing. If the

command is a SET, it writes the key and the value to the memory at the

address given from the hash table. If the command is a DELETE, it does

nothing. The memory controller also has a cache inside, which reduces the

latency of external DRAM access.

4.6.1 Experimental Conditions

We used UDP protocol for the communication between the computer that

runs YCSB and the computer that has the FPGA NIC and runs memcached.

The two servers were connected with the 10 Gbps interconnect. Although

memcached supports both TCP and UDP protocols, to make the packet

offloading simple, we used UDP.

Our proprietary platform board consists of two 10 Gbps network inter-

faces, a Virtex-5 LX330T FPGA, a 1 GB DDR2 SDRAM memory and a PCI

Express (Gen1 x8) interface. The host CPU is Intel Xeon E5-1620. Fig. 4.12

depicts the FPGA NIC mounted on a memcached server. How efficiently we

can use the memory on the NIC depends on how large a hash table we can

implement in the FPGA’s block RAMs. Table 4.3 shows the resource usage.

88

Table 4.3: Design specification of FPGA

Number of used block RAM and FIFO 238 / 324 (86%)

Number of used slice LUTs 60314 / 207360 (29%)

Number of used lice Registers 64505 / 207360 (31%)

Table 4.4: Latencies of the system.

Network 9 µs
Reply from NIC (NIC cache hit) 29 µs
Reply from host CPU (SET) 87 µs

4.6.2 Latency

First of all, we confirmed that our system works for all Workloads A to D.

Then we evaluated the latency of our system in three ways: First, to estimate

the network latency, we implemented a system on the FPGA of the NIC that

returns the request immediately after receiving it from the network. Next, we

implemented the system described in Section 4.6, sent GET requests for the

same key for several times, and got the minimum average. Finally, we sent

SET requests with different keys several times and got the average latency.

All the requests were sent from the server connected to the FPGA NIC with

a 10 Gbps interconnect. The results are shown in Table 4.4. According to

this table, we can estimate that the latency of the NIC cache was 20 µs (29
µs - 9 µs) and the latency of the host CPU was 78 µs (87 µs - 9 µs)

Based on the minimum latencies and the hit rates, we estimated the

maximum improvement of our system for GET requests compared to using

only the CPU (Fig. 4.14). The estimation was done with the following

formula.

87µs/(hit rate× 20µs+miss rate× 87µs) (4.1)

For workload A and B (Zipfian distribution), the latency improved at a max-

imum by about two times, and for Workload D (Latest distribution), the

latency improved at a maximum by 3.5 times. Since the system was im-

plemented with a read-no-allocate policy, the improvement of the latency of

Workload C (Zipfian distribution) was a little less than for Workload A and

B.

89

Table 4.5: Throughputs of the system based on RTL simulation.

Command Throughput (ops/sec)

SET 191,424

GET (100% hit) 399,680-958,772

GET (100% miss) 138,465-165,480

4.6.3 Throughput

Next, we evaluated the throughput of our system. We used RTL simulation

to estimate the throughput. We gave a SET-only workload, a GET-only

(100% hit) workload, and a GET-only (100% miss) workload as input. Table

4.5 shows the results. The numbers have certain ranges whose lower bound

corresponds to 0% hit at the memory controller cache and upper bound to

100% hit. Since our DRAM access module in the memory controller is not

optimised, the throughput is relatively slow compared to other works [11].

Based on these numbers, Fig. 4.13 estimates the throughput with differ-

ent miss rates at the NIC cache. The vertical lines indicate the command

mixes of the workloads; therefore the crossing points show the actual through-

puts. In each graph, the throughput increases as the ratio of GET requests

to the whole (SET and GET) requests increases. The graphs that are labeled

”maximum” are the results for when the cache in the memory controller had

100% hit, and the ”minimum” are for 0% hit. The actual throughput will be

between the maximum and the minimum depending on the hit rate at the

memory controller cache. For example, Fig. 4.13d shows that the through-

put for workload A with cache size of 1/16 of the host DRAM (the miss rate

is around 60% according to Fig. 4.7b) is between 210,000 to 350,000 ops/sec.

4.7 Cache Size Maximization

The cache size of our system is determined by the number of the entries in

the hash table implemented on the block memories in the FPGA. In other

words, the size of the available block memories can become a bottleneck if a

larger cache size is required. In fact, as shown in Table 4.3, we have already

used 86% of the block memories for having 128 MB cache, so it is difficult to

90

T
h

ro
u

g
h

p
u

t
(k

o
p

s
/s

e
c
)

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

Ratio of GET requests (%)

Workload A (50%)

Workload B, D (95%)

Workload C (100%)

Maximum
Minimum

(a) Throughput for 0% miss rate

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

Ratio of GET requests (%)

Workload A (50%)

Workload B, D (95%)

Workload C (100%)

Maximum
Minimum

(b) Throughput for 20% miss rate

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

Ratio of GET requests (%)

Workload A (50%)

Workload B, D (95%)

Workload C (100%)

Maximum
Minimum

(c) Throughput for 40% miss rate

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

Ratio of GET requests (%)

Workload A (50%)

Workload B, D (95%)

Workload C (100%)

Maximum
Minimum

(d) Throughput for 60% miss rate

T
h

ro
u

g
h

p
u

t
(k

o
p

s
/s

e
c
)

Figure 4.13: Throughput of the system with various hit rates.

have a larger cache size. In this section, we consider and evaluate a method

that enlarges the cache size with a limited amount of block memories by

narrowing the tag width.

In our system, we store tags, which are the lower 17 bits of the hash

value calculated from the key, instead of storing the key itself in the hash

table. (Along with the 17-bit tag, the cache uses 1-bit valid bit and 1-bit

MRU bit. MRU bit is used for implementing pseudo-LRU. Throughout this

chapter, we do not include the valid bit and the MRU bit in the term “tag.”)

Therefore, on a SET, a certain KVP in the cache can be overwritten by

another KVP which has a different key but has the same index and tag.

On a GET however, the system ensures that it will not return a KVP that

was not requested by checking whether the key in the retrieved KVP from

the DRAM matches the requested key. Conversely, it is possible to reduce

the block memory usage by making the width of the tag smaller as long as

91

Im
p

ro
v
e

m
e

n
t
o

f
la

te
n

c
y

 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2

1/32 1/16 1/8 1/4 1/2

Size ratio of NIC cache to memcached

8-way
4-way
2-way
1-way

Workload A

 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2

1/32 1/16 1/8 1/4 1/2

Size ratio of NIC cache to memcached

8-way
4-way
2-way
1-way

Workload B

 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2

1/32 1/16 1/8 1/4 1/2

Size ratio of NIC cache to memcached

8-way
4-way
2-way
1-way

Workload C

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

1/32 1/16 1/8 1/4 1/2

Size ratio of NIC cache to memcached

8-way
4-way
2-way
1-way

Workload D

Im
p

ro
v
e

m
e

n
t
o

f
la

te
n

c
y

Figure 4.14: Latency improvement with various associativity and cache ca-

pacity.

the retrieved key is checked. For such purpose, we investigated the relations

between the tag width and the miss rate.

First, we investigated the relation between the tag width and the miss

rate. Fig. 4.15a shows the miss rate with tag widths of 0, 2, 7 and 17.

(As we mentioned above, these numbers do not include the valid bit and

the MRU bit.) We used Workload A and 8-way associative hash table for

this evaluation. The figure shows that there is little difference in miss rates

between the cases of 17-bit and 7-bit tags. As the tag width gets further

narrower towards the left, the miss rate becomes larger due to the increase

of chances of overwriting the keys with different keys.

Next, we evaluated the the effect of narrowing the tag and enlarging the

cache size with constant block memory size (Fig. 4.15b). We used Workload

A and 8-way associative hash table also in this evaluation. As the tag width

92

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

M
is

s
 r

a
te

(%
)

Tag width (bits)

(a) Miss rates with variable tag width, constant cache size,

 and constant associativity.

128 MB cache

8-way associative

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

M
is

s
 r

a
te

 (
%

)

Tag width (bits)

(b) Miss rates with variable tag width, variable cache size,

 and constant associativity.

8-way associative

128 MB

256 MB

512 MB

1024 MB

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

M
is

s
 r

a
te

 (
%

)

Tag width (bits)

(c) Miss rates with variable tag width, variable cache size,

 and variable associativity.

128 MB
8-way

256 MB
8-way512 MB

4-way

2048 MB
1-way

Figure 4.15: Miss rates with constant block memory size.

gets narrower, there are more room in the block memories for increasing the

hash table’s index size, and therefore the cache size can be increased. When

the tag is narrowed from 17 bits to 7 bits, the miss rate decreases because

the cache size increases while the chance of KVPs being overwritten does not

increase. For smaller tag widths, however, the negative effect of overwriting

the key becomes larger than the positive effect of larger cache sizes, and

result in an increase of miss rate.

The block memories can further be exploited. Fig. 4.15c shows the hit

rates of when the block memories are fully exploited for each tag width.

Although if the hash table is 8-way associative, only four different tags can

be stored in a single row when the tag width is two (4 = 22). Instead,

we reduced the associativity to four and doubled the number of the index

when the tag width is two. In the case of 0-bit-width tags, in other words,

in the case of no tags, not only the tags but also the MRU bits are no

93

longer necessary since the associativity is virtually 1-way. The hash table

can then consist only of valid bits. Therefore the cache size can be twice

as large as that of when the MRU bit still exist. Although the chances of

keys overwritten by different keys increase, the effect of increase in cache

size outraces such effect and therefore the miss rate decreases when the tag

width becomes smaller. Throughout these experiments, it can be said that

the cache size can be increased without worsening the miss rate even though

the tag width is narrowed.

4.8 Discussion and Future Work

In order to keep the implementation simple and avoid data inconsistency

between the NIC cache and memcached, we decided to employ a read-no-

allocate policy. As a consequence, this leads to a decrease in the hit rate

for Workload C, which has only GET requests. However, employing read-

allocate instead will lead to a drop of NIC cache’s average latency. Finding

a solution to keep data consistency and high performance at the same time

is one of the largest tasks remaining.

Another limitation in this work is that YCSB, the benchmarking tool we

used, uses fixed sized keys and values for evaluation. If the web server sends

a SET request to our system with variable key and value sizes, while we have

fixed sized space to store the KVP as described in this chapter, we have to

ignore the request at the NIC and leave it to the CPU to handle. This will

lead to a decrease in the hit rate of GET requests and thus the performance

of the system will degrade. To overcome this problem, we should employ a

method to accept any key and value sizes with an efficient memory allocation

technique.

Although there is only 128 MB cache on our NIC, it can be expanded

in two ways. First, As we discussed in Section 4.7, the cache size can be

doubled without increasing the miss rate by narrowing the tag width. (The

cache size is proportional to the size of the hash table.) Second, some of

the recent FPGAs like Vertex UltraScale have more than ten times of block

RAMs than the one we used has. Altogether, there can be 20 times larger

cache (2.5 GB) than the current size (128 MB) on the NIC. In this case, our

94

evaluation considers 5 to 80 GB cache.

Compared to CPU caches, our NIC cache has higher miss rates. We

found out that the NIC cache does not show high hit rate with FIFO or

LRU for workloads with Zipfian key distribution. Therefore in this we tried

LFU, an cache replacement algorithm that leaves the popular keys in the

cache, expecting the hit rate to improve. However, LFU had almost no

effect. This is because the popular keys in the YCSB’s workloads with Zipfian

distribution is so few that they could remain in the cache even with other

cache replacement algorithms. Our next goal is to improve the hit rates for

workloads with Zipfian distribution.

4.9 Conclusion

In this chapter, we proposed a method to accelerate low latency data center

applications by caching the frequently used functionalities and the data run-

ning on the host general purpose processor at the reconfigurable hardware

placed at the server’s network interface. In particular, we proposed a method

to improve the latency of memcached by caching its data at the NIC and re-

plying to the client immediately from the NIC when the requested data is

found. The evaluation was done with a common KVS evaluation tool, YCSB.

With the cache parameters determined through software simulation, the

hardware evaluation showed that our method improves the latency by up to

3.5-fold for GET requests for keys with the Latest distribution compared to

a Xeon. Our further investigation showed that the size of the block RAM on

the FPGA is less likely to become the bottleneck of the cache size if the tag

width of the cache is narrowed. We simplified our method by fixing the sizes

of the key and the value, and the hit rate might drop if we adopt variable

key and value sizes. We will try improving the hit rate by employing a

better cache algorithm and by utilizing the DRAM with an efficient memory

allocation method.

Furthermore, we believe that our approach to improve the performance

of the application by caching the data at the NIC is applicable to other ap-

plications as well. We will try generalizing our method as a new computation

architecture.

95

Bibliography

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:

Amazon’s highly available key-value store,” in Proceedings of 21st ACM

Symposium on Operating Systems Principles, 2007, pp. 205–220.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed

storage system for structured data,” ACM Trans. Comput. Syst., vol. 26,

no. 2, pp. 4:1–4:26, 2008.

[3] Y. Xu, E. Frachtenberg, S. Jiang, and M. Palecezny, “Characterizing

facebook’s memcached workload,” IEEE Internet Computing, vol. 99,

pp. 41–49, 2014.

[4] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,

R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and

V. Venkataramani, “Scaling memcache at facebook,” in Proceedings of

the 10th USENIX Symposium on Networked Systems Design and Imple-

mentation, 2013, pp. 385–398.

[5] http://memcached.org/.

[6] W. Lang, J. M. Patel, and S. Shankar, “Wimpy node clusters: What

about non-wimpy workloads?” in Proceedings of the 6th International

Workshop on Data Management on New Hardware, 2010, pp. 47–55.

[7] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,

“Thin servers with smart pipes: Designing soc accelerators for mem-

96

cached,” in Proceedings of the 40th Annual International Symposium on

Computer Architecture, 2013, pp. 36–47.

[8] M. Lavasani, H. Angepat, and D. Chiou, “An fpga-based in-line acceler-

ator for memcached,” IEEE Computer Architecture Letters, vol. 99, pp.

1–4, 2013.

[9] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele, “Many-core

key-value store,” in Proceedings of the 2nd International Green Comput-

ing Conference and Workshops, 2011, pp. 1–8.

[10] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,

and M. Margala, “An fpga memcached appliance,” in Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate

Arrays, 2013, pp. 245–254.

[11] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István, “Achieving

10gbps line-rate key-value stores with fpgas,” in Proceedings of the 5th

USENIX Workshop on Hot Topics in Cloud Computing, 2013, pp. 1–6.

[12] A. Wiggins and J. Langston, “Enhancing the scalability of

memcached,” http://software.intel.com/en-us/articles/

enhancing-the-scalability-of-memcached-0.

[13] S. Tanaka and C. Kozyrakis, “High performance hardware-accelerated

flash key-value store,” 2014, presented in the 5th Annual Non-Volatile

Memories Workshop.

[14] “Convey computer memcached appliance,” http://www.

conveycomputer.com/files/1813/7998/4963/CONV-13-046_MCD_

Datasheet.pdf.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proceedings of the

1st ACM Symposium on Cloud Computing, 2010, pp. 143–154.

[16] B. Jenkins, “Lookup3.c, for hash table lookup,” 2006, http://

burtleburtle.net/bob/c/lookup3.c.

97

Chapter 5

Conclusion

Many web services such as search engines, social network, e-mail, and shop-

ping are produced every day and they have become essential to our daily

life. As a consequence, however, the energy consumption of data centers,

which are the very basic infrastructure of web services, has become a serious

issue. The miniaturization of the silicon process, which has been a major

factor in improving of processor performance and thus a major factor of web

services’ improvements, is predicted to be approaching to its end, and it is

becoming difficult to expect continued performance improvement. Although

the ASIC can solve the energy consumption issue and the performance issue

simultaneously, the ASIC does not compensate the cost due to the web ser-

vice’s fast development speed. One possible solution is to use reconfigurable

hardware. However, reconfigurable hardware has two issues in data centers:

it is difficult for software developers to use, and its usage and architecture in

the data center are not firmly established.

In this study, we aimed at revealing the difficulties of a software engineer’s

developing application-specific hardware, proposing a method to develop and

use hardware to avoid such difficulties and proposing a method and server

architecture that can take advantage of reconfigurable hardware in data cen-

ters. In order to achieve such objectives, we first clarified the necessary per-

spectives for software developers to design hardware with a state-of-the-art

design method through the process of developing a stream processing hard-

ware with a high-level synthesis tool. Then, on the basis of this perspective,

98

we developed a simplified system that enables software developers to de-

sign stream processing specific hardware without any hardware development

knowledge. Furthermore, we proposed a computing method and architecture

that take advantage of reconfigurable hardware and data center application

characteristics. In the rest of this chapter, we summarize the results of our

work.

In Chapter 2, we developed a processor that does window join, which is an

operator of stream processing, by synthesizing hardware from a source code

written in C with a high-level synthesis tool. By analyzing the difficulties

we faced during the development process, we revealed five awarenesses that

software developers should have

• I/O

• Buffering

• Resource amount

• Loop

• Resource type

The window join processor that we developed achieved 19x higher energy

efficiency than software.

In this work, we divided the window into small sizes and concentrated on a

single subwindow. This approach is applicable to large windows by using the

same hardware massively, and effective for reconfigurable hardware deployed

in cloud systems. However, because the implemented circuit is optimized to

a certain data size and the available resources on DRP, implementing the

same application to different hardware will have to be re-optimized to the

target hardware. Inventing a method that is capable of synthesizing circuits

to various sizes of data and reconfigurable hardware is highly beneficial for

realizing the previously mentioned final step. For building such a method,

the five awarenesses we proposed would be a useful policy.

In Chapter 3, we proposed a method that enables software engineers

to develop hardware by using a parser that converts StreamSQL to HLS-

intended C code, and proved that it is effective in practical use through

99

measurements of the system we implemented on DRP. The parser has the

following characteristics:

• It converts StreamSQL queries via a hardware framework that corre-

sponds to its logical structure.

• It achieves high performance by having a hardware structure that takes

advantage of the data-flow type processing nature that the StreamSQL

has.

• The generated C code is optimized to the target hardware and software

developers do not have to be aware of the hardware.

The performance of the resulting hardware showed more than twice as high

throughput than software and extracted over 90% of the I/O bandwidth of

the chip.

This work was meaningful in that it reduces the software programmer’s

cost for developing reconfigurable hardware based systems. Choosing the

stream version of SQL, which is heavily used in data centers, makes the

impact of the work even larger. However, the developer of the parser that

converts SQL queries to C code still needs knowledge of hardware develop-

ment. This cost should decrease as the HLS technology progresses or by using

virtualization technology of reconfigurable hardware. If the parser imports

such technologies and combines with a technology that offloads the complex

functionalities that were not supported, the parser will be edible for making

reconfigurable hardware transparent in data centers.

In Chapter 4, we proposed a system that enhances the unmodified database

software system by supporting the general-purpose processor with a dedi-

cated hardware that is placed in the I/O path of the general-purpose proces-

sor. We took memcached, an in-memory key-value store, as an example of

this method. The system has the following characteristics:

• The hardware implemented on the FPGA is simplified by supporting

only the most frequently used commands among all memcached com-

mands.

• Placing the hardware on the network interface reduces the latency of

the memcached request compared to the usual system.

100

• Taking advantage of the temporal locality of the memcached data,

caching only a part of the memcached data enhances the performance.

The implemented system yielded 10 times smaller latency than only the

software memcached.

This work contributes to the data center architecture to seamlessly use

general-purpose processors and reconfigurable hardware and to make recon-

figurable hardware use transparent. To enable end users to use this architec-

ture, which caches the general-purpose processor’s frequently used functional-

ities and data to the reconfigurable hardware placed at the network interface

of the server, on IaaS where end users have the freedom to allocate computing

resources on demand, more improvement is needed. Functionalities such as

moving recently used functions or processes at the general-purpose processor

to the reconfigurable hardware or dynamically changing the characteristics

of the data that is cached at the network interface will be required. For this

improvement, taking in the achievements of research on hardware develop-

ment technology is crucial. In addition, processing methods or programming

methods that intend to be moved between the general-purpose processor and

the reconfigurable hardware will be needed.

Data centers were mainly used for storing various data originally; thus,

there is a high demand for making database applications faster and more

efficient. In fact, there are many Internet services based on SQL that are

provided to the end users by network service provider companies. In such a

sense, the methodologies that were proposed in this thesis, i.e. the hardware

generating method from stream SQL and the acceleration method of key-

value store, which is the basis of recent large-scale non-relational databases,

have a large impact on database hardware application research.

However, the recent trend of opening up the computing resources in data

centers to end users as IaaS is accelerating the diversification of applications

running on data centers. There are more cases in which non-database ap-

plications such as image processing, data analysis, pattern recognition, and

machine learning, are being executed on data centers. Those applications are

often incapable of describing with SQL. In fact, some database researchers

are trying to enhance the current SQL grammar so that various non-SQL

functionalities can be embedded in SQL queries. It is not easy to estab-

101

lish a general methodology that can convert such diverse applications to

efficient hardware. As shown in Chapter 2, developers need hardware de-

velopment knowledge to develop efficient hardware even with HLS. To solve

this problem, researchers are trying to narrow the hardware design space

by making a template for each application domain or using different pro-

gramming paradigms, such as functional programming, from the procedural

programming on which many current HLS tools are based.

The rapid advancement of hardware acceleration of database applications

is due to the large number of researchers and developers that are eager to

accelerate database applications in data centers. The method we showed in

Chapter 3, the hardware development method from stream SQL, is based on

such past works. However, since non-database applications in data centers

are diverse, creating a general method for hardware accelerating those appli-

cations will be more difficult. The more actively such research is done, the

more rapidly it will advance. Research on hardware acceleration of individual

application and research on a general hardware acceleration method for di-

verse applications will mutually enhance each other. The most efficient way

to produce such an ascending spiral is to open the data center equipped with

reconfigurable hardware to the public. Such a platform will involve not only

researchers but also more developers in the industry in hardware acceleration

research and accelerate the advancement speed.

102

Acknowledgements

I want to thank Professor Masato Motomura and Professor Tetsuya Asai

at Hokkaido University for his advice during the writing of this thesis and

pursuing my Ph.D. research. I am also deeply grateful to Professor Hiroki

Arimura, Professor Eiichi Sano and Professor Junichi Motohisa at Hokkaido

University for their advice and fruitful discussions.

Dr. Hiroaki Inoue at NEC Corporation, Dr. Takashi Takenaka at NEC

Corporation, Professor Hideyuki Kawashima at University of Tsukuba, Mr.

Taro Fujii at Renesas Electronics, and Koichiro Furuta at Renesas Elec-

tronics provided me with a lot of suggestions on the research and hardware

development techniques.

I also would like to thank the members of my research team, Dahoo

Kim, Tsunaki Sadahisa, and Kasho Yamamoto for supporting my research by

developing the software and hardware components of the system we proposed.

103

List of Publications

1. Journal Papers

1. E.S. Fukuda, H. Inoue, T. Takenaka, D. Kim, T. Sadahisa, T. Asai,

and M. Motomura, “Enhancing memcached by caching its data and

functionalities at network interface,” Journal of Information Process-

ing, vol. 23, no. 2 (2015).

2. E.S. Fukuda, H. Kawashima, H. Inoue, T. Asai, and M. Motomura, “C-

based de- sign of window join for dynamically reconfigurable hardware,”

Journal of Computer Science and Engineering, vol. 20, no. 2, pp. 1-9

(2013).

2. International Conferences

1. E.S. Fukuda, H. Inoue, T. Takenaka, D. Kim, T. Sadahisa, T. Asai,

and M. Motomura, “Achieving higher performance of memcached by

caching at network interface,” The 2014 International Conference on

Field Programmable Technology (FPT), Shanghai, China (Dec. 10-12,

2014).

2. E.S. Fukuda, H. Inoue, T. Takenaka, D. Kim, T. Sadahisa, T. Asai,

and M. Motomura, “Caching memcached at reconfigurable network

interface,” The 24th International Conference on Field Programmable

Logic and Applications (FPL), Munich, Germany (Sep. 2-4, 2014).

3. E.S. Fukuda, T. Takenaka, H. Inoue, H. Kawashima, T. Asai, and M.

Motomura, “High level synthesis with stream query to C parser: Elimi-

104

nating hardware development difficulties for software developers,” The

18th Workshop on Synthesis And System Integration of Mixed Infor-

mation Technologies (SASIMI), pp. 310-315, Sapporo, Japan (Oct.

21-22, 2013).

4. E.S. Fukuda, H. Kawashima, H. Inoue, T. Asai, and M. Motomura,

“Exploiting hardware reconfigurability on window join,” The 2013 In-

ternational Conference on High Performance Computing and Simula-

tion (HPCS), Helsinki, Finland (Jul. 1-5, 2013).

5. E.S. Fukuda, H. Kawashima, H. Inoue, T. Fujii, K. Furuta, T. Asai,

and M. Motomura, “C-based adaptive stream processing on dynami-

cally reconfigurable hardware: window join case study,” The 9th In-

ternational Symposium on Applied Reconfigurable Computing (ARC),

Los Angeles, U.S.A. (Mar. 25-27, 2013)

3. Domestic Conferences (in Japanese)

1. 福田 エリック駿, 定久 紀基, 井上 浩明, 竹中 崇, 浅井 哲也, 本村 真人,

“二重キャッシングによる Memcached 高速化の提案,” 電子情報通信学
会 リコンフィギャラブルシステム研究会, 慶応義塾大学 (日吉), 2014

年 1月 28-29日.

2. 福田 エリック駿, 川島 英之, 井上 浩明, 藤井 太郎, 古田 浩一朗, 浅井
哲也, 本村 真人, “リコンフィギュラブルハードウェアを用いた高速ス
トリーム処理の一検討,” 電子情報通信学会 リコンフィギャラブルシス
テム研究会, 北陸先端科学技術大学院大学 (能美), 2013年 9月 18-19日.

3. 福田 エリック駿, 川島 英之, 井上 浩明, 浅井 哲也, 本村 真人, “C 言語
による動的リコンフィギュラブルハードウェアへの Window Join の実
装,”電子情報通信学会情報ネットワーク研究会, 福井大学 (福井), 2013

年 6月 20-21日.

105

4. Journal Papers (Co-authored)

1. D. Kim, I. Hida, E.S. Fukuda, T. Asai, and M. Motomura, “Reduc-

ing power and energy consumption of nonvolatile microcontrollers with

transparent on-chip instruction cache,” Circuits and Systems, vol. 5,

no. 11, pp. 253-264 (2014).

5. International Conferences (Co-authored)

1. K. Yamamoto, E.S. Fukuda, T. Asai, and M. Motomura, “An acceler-

ator for frequent Itemset mining from data stream with parallel item

tree,” The 19th Workshop on Synthesis And System Integration of

Mixed Information Technologies (SASIMI), Yilan, Taiwan (Mar. 16-

17, 2015).

2. D. Kim, I. Hida, E.S. Fukuda, T. Asai, and M. Motomura, “A study

of transparent on-chip instruction cache for NV microcontrollers,” The

7th International Conference on Advances in Circuits, Electronics and

Micro-electronics (CENICS), Lisbon, Portugal (Nov. 16-20, 2014).

3. D. Kim, E.S. Fukuda, T. Sadahisa, T. Asai, and M. Motomura, “Hard-

ware architecture for accelerating key-value retrieval implemented on

FPGA,” The 3rd Japan-Korea Joint Workshop on Complex Commu-

nication Sciences (JKCCS), Busan, Korea (Oct. 27-28, 2014).

6. Domestic Conferences (Co-authored, in Japanese)

1. 定久 紀基, 山本 佳生, 金 多厚, 福田 エリック駿, 浅井 哲也, 本村 真人,

“Locality-Sensitive Hashingのスケーラブルなハードウェアアーキテク
チャの FPGA実装,” 電子情報通信学会総合大会, 立命館大学びわこ・
くさつキャンパス (草津), 2015年 3月 10-13日.

2. 定久 紀基, 山本 佳生, 金 多厚, 福田 エリック駿, 浅井 哲也, 本村 真人,

“類似検索を行う Locality-Sensitive Hashingのスケーラブルなハード
ウェアアーキテクチャ,”電子情報通信学会集積回路研究会・コンピュー

106

タシステム研究会合同 平成 26年度若手研究会, 機械振興会館 (東京),

2014年 12月 1-2日.

107

