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Neuromorphic systems performing early sensory and
cognitive processing with CMOS devices　

Abstract

This research aims at implementing “Neuromorphic Systems”, i.e., circuits

inspired by the organizing principles of animal neural systems, implemented

using standard Complementary Metal-Oxide Silicon (CMOS) LSI technology.

These kinds of circuits are usually parallel, and they respond in real time. They

operate mainly in the sub-threshold region, where the transistors have physi-

cal properties that are useful for emulating neurons and neural systems, such

as thresholding and exponentiation. Based on current knowledge of biological

systems, this work aims at developing neural circuits and systems that emu-

late basic functions of the sensory system. The sensory system is the part of

the nervous system responsible for processing sensory information, it consists

of sensory receptors, neural pathways, and other parts of the brain involved

in sensory perception. Sense perception depends on sensory receptors that res-

pond to various stimuli. When a stimulus triggers an impulse in a receptor, the

stimulus is transformed into pulses or action potentials. The action potential

travels through a pathway to the cerebral cortex, where they are processed and

interpreted. To this end, this research starts with the implementation of some

functions of the early-sensory processing like, detection and transformation of

input stimuli, role synaptic connections in sensory information processing. This

is done by implementing a number of models such as, a) a temperature sensor,

(somatosensory system), inspired by the operation of neurons in sea slugs and

snails, in order to mimic sensory receptors whose function is to transform phy-

sical stimuli into a train of nerve impulses, b) this neuron model was extended

for implementing a network for weak signal detection that exhibit tolerance to

noises, to explore the ability of sensory systems to exploit noises inherit in their

own elements (neurons) as well as noises from the environment (i.e. the input



 



stimuli), and c) the circuit implementation of a depressing synapse model, whose

dynamic effects possibly have a functional role in encoding information brought

by sensory stimuli. In auditory pathway, depressing synapses may provide an

effective way of detecting emergent synchrony in afferent activities. Then, the

attention is shifted to the cognitive processing area with the introduction of

two models. a) a neural network for sensory segmentation. To analyze and un-

derstand natural scenes, i.e., images, sounds, etc. it is necessary to decompose

the scene into coherent “segments”, where each segment corresponds to a dif-

ferent component of the scene. This ability is known as sensory segmentation.

The model consists of mutually coupled neural oscillators that exhibit synchro-

nous (or asynchronous) activity. The basic idea is to strengthen (or weaken) the

synaptic weights between synchronous (or asynchronous) neurons, which may

result in phase-domain segmentation. Finally, this work concludes with b) the

implementation of a neural model for the storage of temporal sequences. In or-

der to study the brain ability to learn and recall information as the environment

changes over time (i.e. information we perceive is time varying) which is of fun-

damental importance in various sensory functions. The model consists of neural

oscillators coupled to a common output cell. The basic idea is to learn input

sequences, by superposition of rectangular periodic activity (oscillators) with

different frequencies. To mimic the operation of these neurons and networks of

neurons, we employed biological nonlinear oscillators. The mathematical model

of these oscillators consist of two nonlinear differential equations whose main

term is a sigmoid function. The stability of the model depends on the magnitude

of its variables. In other words, the model can be excitatory or oscillatory de-

pending on the value of its variables. The models were implemented with basic

circuits such as differential pairs (which emulate a sigmoid-like operation) and

current mirrors. The operations of the systems were investigated through theo-

retical analysis, numerical simulations and circuit simulations. The implication

of device fabrication mismatches and environmental noise were also studied.
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Chapter 1

Introduction

This research is centered on the study, design and implementation of Neural
elements, like neurons and networks of neuron. More specifically, the implemen-
tation of neural elements involved in the processing of sensory information. The
implementation of such kind of systems is usually referred to as “Neuromorphic
systems”. It is consist of “simple circuits” inspired by the organizing princi-
ples of animal neural systems and implemented using standard Complementary
Metal-Oxide Silicon (CMOS) technology. This chapter give an introduction to
basic terminology and concepts necessary to have an idea of how the biological
sensory system processed information.

1.1 Background

Research into neuromorphic systems is part of the large field of computational
neuroscience. The era of neural networks is believed to begin in 1943 with the
work of McCulloch and Pitts [1], where they proposed that brain cells (neurons)
could be modeled by a “simple electronic circuit”. During the next fifteen years
there was considerable work on detailed logic of threshold networks. In 1958
Frank Rosenblatt introduced his architecture for classification. In 1982, John
Hopfield published a paper describing the Hopfield network [2], a simple artificial
network which is able to “store” certain patterns.

However, the term “neuromorphic” appears to have started off meaning
neuron-like in the late 1980’s particularly by those interested in optical imple-
mentation of neural networks. The meaning of the word is mimic(ing) specific
neurobiological functions, and the meaning seems to have come from the silicon
implementation side from the work of mainly two research groups; Alspector’s
group [3] and Mead’s group [4] [5].

The earliest neuromorphic systems were concerned with providing an engi-

12



1.2. OBJECTIVE 13

neering approximation to some aspects of sensory systems such as, auditory
system [6] and visual system [7]. More recently, there has also been work on
robot control systems, on modeling various types of neurons, and on including
adaptations in hardware systems.

Although the detailed information of the brain operation still a puzzle to
be solve by neuroscientists, the knowledge that has been accumulated through
the biological neural networks research, does give good clues toward the con-
struction of artificial systems that emulate some of the characteristic of the
nervous system. Biological neural networks provide us with resourceful guid-
ance on building the intelligent machine and to pursue the “brain building”.
In addition, the progress in hardware implementation will contribute to a bet-
ter understanding of paradigms and biological systems as well as many useful
applications.

Therefore, based on current knowledge of biological systems, this work aims
to develop basic neural circuits and networks that emulate characteristics of
the processing of information carried-out by the biological sensory system. As
known, the sensory system is the part of the nervous system responsible for the
processing of sensory information, it consists of sensory receptors, neural path-
ways, and other parts of the brain involved in sensory perception. This thesis
focus mainly in two areas of the sensory processing; the early sensory processing,
including receptors and synapses; and the cognitive sensory processing.

1.2 Objective

This research is focus on the design and hardware implementation of biological
systems, particularly in the human brain. The human brain is a complex, non-
linear and highly parallel system. Moreover, the brain can easily adjust to a new
environment by “learning” and it can deal with information that is fuzzy, noisy
or inconsistent. Owing to these characteristics, understanding how the brain
works, in particular, how it extracts useful information from “noisy” neural
signals, has been one of the most challenging tasks in neuroscience.

With the success of digital systems nowadays, one may ask, what alternative
ways of exploring microelectronics are in there?. The answer is simple, the
human brain outperforms any computer or supercomputer, not only in size, but
also in “efficiency” and robustness. Moreover, the brain can adjust to a new
environment by “learning” and it can deal with information that is probabilistic
and noisy.

Digital computers of today solve a problem by imposing a computational
recipe, or algorithm, on general purpose hardware. So unless the specific steps
that a computer needs to follow are known the computer can not solve the
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problem. Neuromorphic systems by contrast, embody in the physical behavior
of their circuits “analogues” of the processes performs by neural systems. They
exhibit fundamental neural functions because the structure of the nervous sys-
tems are reproduce on silicon chip. In other words, they transfer our knowledge
of neuroscience into practical devices that can interact directly with the real
world in the same way that biological neural systems do.

Although the detailed information of the brain operation still a puzzle to be
solve by neuroscientists, the knowledge that has been accumulated through the
biological neural networks research, does give good clues toward the construction
of artificial systems that emulates some of the characteristic of the nervous
system.

To this end, based on current knowledge of biological sensory systems, this
thesis aims to implementing basic circuits that emulate some basic characteris-
tics of sensory systems; detection of weak and noisy input stimuli, synchroniza-
tion, properties of synaptic connections, separation or decomposition of natural
scenes, and storage of temporal sequences.

The sensory system is a part of nervous system responsible processing sen-
sory information. The sensory system informs areas of the cerebral cortex of
changes that are taking place within the body or in the external environment.
It consists of sensory receptors that receive stimuli from internal and external
environment, neural pathways that conduct this information to the brain, and
parts of the brain that process this information. Figure 1.1 shows a schematic
of the different senses (from visual to olfaction) and the route they follow to
transfer the input stimulus to their respective area in the cortex [8].

Receptors

Receptors are specialized endings of afferent neurons (sensory neurons) or sep-
arate cells that affect ends of afferent neurons. They collect information about
external and internal environment in various energy forms (stimulus). Stimulus
energy is first transformed into nerve impulses (electrical pulses) or receptor
potentials by a process called stimulus transduction.

Sensory receptors respond to specific stimulus modalities. Some of them are:

• Thermoreceptors, respond to change in the temperature.

• Photoreceptors, respond to light.

• Mechanoreceptors, detect changes in pressure, position, or acceleration.

• Chemoreceptors, detect certain chemical stimuli.
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Neural pathway

The sensory or ascending pathway is the route followed by a sensory nerve
impulse from a receptor to the brain. Figure 1.2 is a schematic showing the
general outline of the ascending pathway. The sensory neurons (that form the
ascending pathway) are activated by input stimulus detected and transformed
by the sensory receptors (specialized end of the sensory neurons). The active
neurons then convey the information to their respective nuclei in the central
nervous systems, where the information is further processed as it progress via
sensory systems to the cerebral cortex.

The sensory pathway for, the visual, hearing and somesthesia senses are
interrupted by synaptic transmission in the ventral thalamus, and the axon of
these neurons project to regions of the cerebral cortex that are specific to each
sense, and are known as the primary sensory cortices (Fig. 1.1). From there
information progresses to secondary and association cortices. The fibers of the
taste pathway, after making synaptic connections with cells in the brainstem
projects not only to the ventral thalamus, but it also projects to other areas
such as, Limbic system, motor pathways and pancreas. The cells in the thalamus
project to the insular cortex and somatosensory areas.

The olfactory pathway reaches parts of the central nervous systems that are
different from those of the four other senses. After reaching the olfactory bulb,
where the first synapse is located, it projects to: anterior olfactory nucleus,
Piriform cortex, medial amygdala and entorhinal cortex.

Following the basic characteristic of the biological sensory processing from
stimuli reception to processing (sensory pathway) this thesis is outlined as fol-
lows:

• Chapter 1 explains the introduction, background and purpose of this re-
search

• Chapter 2 gives an introduction to the basics of neural networks and neu-
romorphic systems and a brief explanation of CMOS circuits used in this
research.

• Chapter 3 starts with the implementation of a circuit for the first step
of sensory perception “receptors”; A temperature receptor. The model
is inspired by the operation of excitable sensory neurons. The cir-
cuit consists of sub-threshold CMOS circuits whose dynamical behavior
changes at a given threshold temperature, i.e., switches to and from oscil-
latory and stationary. The threshold temperature is set to a desired value
by adjusting an external bias voltage. The operation of the model was
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studied in detail through theoretical analysis, extensive simulations, and
experimentally through discrete MOS devices.

• Chapter 4 introduces a network model exhibiting array-enhanced stochas-
tic resonance, for detection of weak input signal (stimuli). Sensory systems
are expose to the noise in the environment and to the noise inherit in their
own elements. Therefore, neural systems may employ different strategies
that can exploit the properties of noise to improve the efficiency of neu-
ral operations. This chapter focuses on the implementation of such kind
of noise driven networks in hardware. The model consists of a 2D grid
network in which all elements (neuron) accept a common sub-threshold
input. In addition, no external noise source is required for the operation
of the network as each neuron interact with other neurons through the
coupling to generate spatio-temporal noises.

• Chapter 5 introduces a depressing synapse model. Moreover, the dynam-
ical effects of depressing synapses on synchronization are studied using
a simple network of neurons. The model was studied through circuits
simulations using a simulation program with integrated circuit empha-
sis (SPICE). Consequently, timing jitter among neurons was significantly
reduced when using depressing synapse as compared to non-depressing
synapses.

In chapters 6 and 7, the focus is shifted to the cognitive processing area.
Two model are introduced; a neural segmentation model, and a model for
the storage of temporal sequences. Therefore, the following chapters are
distributed as follow:

• In chapter 6 it is proposed a neural network model for sensory segmenta-
tion. Segmentation is refer to the ability to decompose natural scenes into
coherent “segments” (each segment corresponds to a different component
of the scene). The model consists of neural oscillators mutually coupled
through synaptic connections. The model performs segmentation in tem-
poral domain, which is equivalent to segmentation according to the spike
timing difference of each neuron. Thus, the learning is governed by sym-
metric spike-timing dependent plasticity (STDP). The basic operations of
the proposed model was studied numerically and with circuit simulations
using a simulation program with integrated circuit emphasis (SPICE).

• Chapter 7 presents a model for learning and recalling the temporal input
stimuli. The model consists of neural oscillators which are coupled to a
common output cell through positive or negative synaptic connections.
The basic idea is to learn input sequences, by superposition of rectangular
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periodic activity (oscillators) with different frequencies, by strengthened
(or weakened) the weights of synaptic connections when the output of
oscillatory cells overlap (or do not overlap) with the input sequence. The
operation of the model was numerically confirmed. Moreover, fundamental
circuit operations were studied and the operations of the circuit network
was confirmed through SPICE simulations.

• Finally, chapter 8 concludes this research.



 



Chapter 2

Basic concepts

CMOS circuits and neural

networks

This chapter will give a brief explanation of basic circuits and terminology
necessary for the understanding of this work. Its start with the explanation of
CMOS circuit structure, follow by the explanation of basic circuitry used for
implementing the different sensory systems described in this thesis. In addition,
the terminology used in the study of artificial and biological neural networks is
explained.

2.1 CMOS circuits

In today’s integrated circuits (IC) industry a good understanding of semicon-
ductors devices is essential. In special the MOS transistor (MOSFET) that has
become the most used semiconductor device today. Since late 1970’s the MOS-
FET has been extremely popular,this is because, compared to other transistors
they can be quite small and their manufacturing process is relatively simple.
Furthermore, digital logic and analog designs can be implemented with circuits
using only MOSFETs devices. They can be used as the building blocks of
logic gates, fundamental in the design of digital circuits like microprocessors, in
which transistors act as on-off switches. For analog circuits transistors respond
to a continuous range of inputs with a continuous range of outputs. For these
reasons, most very-large-scale integration (VLSI) circuits are made using MOS
technology.

20
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2.1.1 The MOSFET

Symbology

Before explaining the operation of MOSFET, lets consider the symbology used
to denote the devices. Figure. 2.1 shows the symbols used for a n-type and
p-type MOSFET. It is important to note that a MOSFET is a four-terminal
device, the symbols shown in the figure are the simplified model in which the
bulk is connected to the source.

Structure

Figure 2.2, shows a simplified structure of an n-channel MOSFET (nMOS).
The device is fabricated on a p-type substrate (also called “body”), it consists
of two heavily doped n regions that form the source and the drain terminals,
a thin layer of silicon dioxide (SiO2) is insulating the gate from the substrate.
Polysilicon (poly) operating as the gate terminal is deposited on top of the oxide.

It is important to note that the substrate forms pn junctions with the source
and the drain regions. Since the drain will be at a positive voltage relative to
the source (reverse-biased), the two pn junctions can be cut off by connecting
the bulk terminal to the source.
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Figure 2.3: a) Structure of an nMOS transistor with gate voltage Vgs, b) corre-
sponding symbology, and c) nMOS showing the depletion capacitance.

The structure of pMOS devices can be obtained by inverting all of the doping
types. In practice nMOS and pMOS devices are fabricated on the same wafer,
i.e., the same substrate. For this, one device type can be placed in a local
substrate called “well”.

Operation and I/V characteristic

Lets consider the Fig. 2.3 (a) the nMOS with the gate connected to an external
voltage Vgs. The corresponding symbology is shown in Fig. 2.3(b). Since the
gate and the substrate form a capacitance, when Vgs becomes more positive,
holes in the p-substrate are repelled from the gate area however, for small Vgs,
the voltage is not positive enough to attract a large number of electrons creating
a depletion region. Under this condition, no current flows. When Vgs increases,
the width of the depletion region also increase. At this point, the structure
resembles two capacitors in series, Ccox and Cdep as shown in Fig. 2.3 (c). The
increase on Vgs also attracts electrons from the n+ regions (source and drain)
where they are abundant. Thus, a “channel” of charge carriers is formed under
the gate oxide and the transistor is “turned on” as shown in Fig. 2.3 (a). The
value of Vgs for which this occurs is called “threshold voltage” (Vth).

Now lets consider the voltage Vds, shown in Fig. 2.3 (a). This voltage causes
a current Id to flow from drain to source. The magnitude of Id depends on the
density of electrons in the channel, and the density of electrons depends on the
magnitude of Vgs. When Vgs = Vth the channel is just formed, so the current is
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still very small. When V gs exceeds Vth, the channel charge density increases,
(the channel’s width increases). As a result, the conductance of the channel
increases. The conductance of the channel is proportional to the effective

voltage (Vgs − Vth). The current Id is proportional to this voltage (Vgs − Vth)
and to the voltage Vds that causes Id to flow. Figure 2.4 shows the Id - Vds

characteristic of an nMOS transistor, with small Vds for various values of Vgs.
It can be observed that the MOSFET operates as a linear resistance whose
value is controlled by Vgs. When Vgs is small, the resistance is big, and as Vgs

increases the resistance decreases.

The channel’s width depends on voltage Vds, therefore, when Vds increases
the potential of the channel at the drain decreases (Vgs−Vds). It can be observed
in Fig. 2.5, that the channel is not longer uniform. If Vds keep increasing, the
channel reduces more and more and its resistance increases correspondingly.
Eventually, when the channel potential at the drain is reduce to Vth (Vgs−Vds =
Vth) the channel width is almost zero, and the channel is said to be “pinched
off”.

Figure 2.6 shows the Id - Vds characteristic of an nMOS transistor. From
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there it can be indicated three regions of operation; the “cut off” region (also
called sub-threshold or weak inversion region), the “triode” or linear region
and the “saturation” region. The saturation region is used for the MOSFET
to operates as an amplifier, for the operation as a switch, the cut off and the
triode regions are used.

The MOSFET is cut off when Vgs < Vth. To operate in the triode region
Vgs should be higher than Vth (Vgs ≥ Vth) and Vds should be kept small enough
(Vgs − Vds > Vth) so that the channel remains continuous.

In the triode region the Id - Vds characteristic can be describe by:

Id = β[(Vgs − Vth)Vds − V 2
ds

2
] (2.1)

where β is the transconductance parameter given by:

β = KPn
W

L
. (2.2)

If Vds is very small (Vds << 2(Vgs − Vth)), Eq. (2.1) can be expressed as:

Id = β(Vgs − Vth)Vds (2.3)

this linear relationship represents the operation of the MOS transistor as a linear
resistor as shown in Fig. 2.4, with resistance Rd:

Rd =
Vds

Id
= [β(Vgs − Vth)]−1 (2.4)

whose value is control by Vgs.

The MOSFET operates in the saturation region when Vgs is grater than Vth
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and the drain voltage Vds does not fall below the gate voltage Vgs by more than
Vth, (Vds ≥ Vgs − Vth). The saturation current can be expressed as:

Id =
β

2
(Vgs − Vth)2. (2.5)

In saturation the drain current Id is independent of the drain voltage Vds,
instead is determined by the gate voltage Vgs. Figure 2.7 show the Id - Vgs

characteristic of an nMOS transistor. Thus, the MOSFET in saturation behaves
as a current source whose value is controlled by Vgs.

2.1.2 Sub-threshold current

The current that flows when Vgs < Vth is called sub-threshold, current. The
MOSFET is said to be operating in the weak inversion, cut off or sub-
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threshold region. This current is due to diffusion current between the drain
and the source and is given by:

Id = I0e
Vg/ηVT (e−Vs/VT − e−Vd/VT ) (2.6)

where η is the slope factor, VT is the thermal voltage (VT = kT/q), k is the
Boltzmann’s constant, T is the temperature, and q is the elementary charge.
Current I0 is given by:

I0 = 2ηβV 2
T e−Vth/ηVT (2.7)

For small Vds the transistor operates in the triode region (also called linear

region) described by Eq. (2.8). In terms of Vds this equation can be rewritten
as:

Id = I0e
Vgs/ηVT (1− e−Vds/VT ) (2.8)

As Vds increases (Vd > 4VT ) the transistor operates in saturated region. The
I-V relation in this region is described by:

Id = I0e
(Vg−Vs/ηVT ) (2.9)

Figure 2.8 shows the Id-Vds characteristic of a transistor operating in the satu-
ration region.

2.1.3 Sub-threshold analog circuits

Since early 1980s, digital signal processing were becoming more powerful. The
advance in IC technology provided compact, efficient implementation of circuits,
so, many functions that were realized in the analog form were easily performed
in the digital domain. However, in the past two decades, CMOS Technology
has rapidly embraced the field of analog integrated circuits, providing low-cost,
high-performance, rising this way the use of analog circuits. In addition, by
careful use o the analog characteristics of transistors, arithmetic functions such
as, addition, multiplication, exponential, logarithmic and tanh functions may
be implemented using relatively few transistors as compare with digital circuits.
Consequently, analog circuits have been proved fundamentally necessary for
solving complex tasks, including the processing of natural stimuli. This chapter
gives a brief explanation of commonly used analog circuits, including the current
mirror, the differential pair and the transconductance amplifier.
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Current mirror

The basic circuit of a current mirror is shown in Fig. 2.9. First lets us suppose
that the two nMOS are identical. A current I1 flows through transistor m1,
corresponding to the gate voltage, Vgs1 . Since the gates of m1 and m2 are
connected, the gate voltage of m2 is the same as the gate voltage of m1, (Vgs1 =
Vgs2 = Vgs). Ideally the same current that flows through m1, flows through
m2. In other words, two identical MOS devices with equal gate voltages and
operating in saturation carry equal currents.

The current I1 is given by:

I1 = I01e
(Vgs1 )/ηVT . (2.10)

while the output current I2 is:

I2 = I02e
(Vgs2 )/ηVT . (2.11)



28CHAPTER 2. BASIC CONCEPTSCMOS CIRCUITS AND NEURAL NETWORKS

V

m m

m

1 2

3
ref

V V1 2

I I1 2

Ib

V

Figure 2.11: Schematic of the differential pair.

Since Vgs1 = Vgs2 and I0 ∝ β (Eq. (2.7)) the ratio of the currents can be written
as:

I2

I1
=

β2

β1
=

W2L1

W1L2
(2.12)

This equation shows how to adjust the W/L ratio of the two devices to achieve
the desired output current. By making L1 = L2, Eq. (2.12) is simplified as:

I2

I1
=

W2

W1
(2.13)

SPICE simulation results are shown in Fig. 2.10.

Differential pair

The differential pair is one of the basic amplifying stages in amplifier design.
The differential pair’s output is represented as the difference between the voltage
of its inputs. The differential pair circuit is shown in Fig. 2.11. It consists of
tree nMOS transistors. Transistor m3 is used as a current source. Normally the
drain voltage V is large enough so that the drain current Ib is saturated and its
value is controlled by the bias voltage Vref . The current Ib is divided between
transistor m1 and m2 depending on their gate voltages V1 and V2.

Ib = I1 + I2 (2.14)

As explained in the previous sections, the saturated drain current is given
by Eq. (2.8). Applying this expression to the current of transistors m1 and m2

(Fig. 2.11)

I1 = I0e
κ(V1−V )/VT (2.15)

I2 = I0e
κ(V2−V )/VT (2.16)
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So Ib can be expressed as:

Ib = I0e
−V/VT (eκ(V1)/VT + eκ(V2)/VT ) (2.17)

Solving the equation:

e−V/VT =
Ib

I0

1
(eκ(V1)/vT + eκ(V2)/vT )

(2.18)

Substituting this expression in Eqs. (2.15) and (2.16) it is obtained:

I1 = Ib
eκ(V1)/VT

(eκ(V1)/VT + eκ(V2)/VT )
(2.19)

I2 = Ib
eκ(V2)/VT

(eκ(V1)/VT + eκ(V2)/VT )
(2.20)

If V1 is higher than V2, transistor m2 is off, and all the current goes through
m1, (I1 ≈ Ib). The contrary is also true. Currents I1 and I2 as function of
V1 − V2 are shown in Fig. 2.12.

Equations (2.19) and (2.20) can be expressed in terms of voltage difference
(V1 − V2) by subtracting them:

I1 − I2 = Ib(
eκ(V1)/VT − eκ(V2)/VT

eκ(V1)/VT + eκ(V2)/VT
(2.21)

Then by multiplying and dividing by e−(V1+V2)/2, it is obtained

I1 − I2 = Ib(
eκ(V1−V2)/2VT − e−κ(V1−V2)/2VT

eκ(V1−V2)/2VT + e−κ(V1−V2)/VT
(2.22)
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The r.h.s. of this equation can be express as tanh:

I1 − I2 = Ib tanh
κ(V1 − V2)

2VT
(2.23)

Transconductance amplifier

The schematic of the transconductance amplifier is shown in Fig. 2.13 (a). The
amplifier’s symbol is shown in Fig. 2.13 (b). The circuit consists of a differential
pair (m1 −m2 −m3) and a current mirror (m4 −m5). Current I1 is copied to
I2 by the current mirror. Thus, the output current will be the subtraction of
the currents (I2 − I3).

The output current of a simple amplifier is shown in Fig. 2.14. The curve
is very close to a (tanh) as expected, from the explanations of differential pairs
circuits in the previous subsection.
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2.2 Introduction to neural networks

Building intelligent systems to mimic biological systems, in particular neural
systems has capture the attention of the world for years. So, it is not surprising
that a technology such as neural networks has generated great interest. The
human brain is a complex, non-linear and highly parallel system (it can pro-
cess incoming stimuli simultaneously) that can easily outperform any existing
computer. The brain has many features desirable in artificial systems:

• The brain is flexible. It can adjust to new environment by “learning”.

• It is robust and fault tolerant. Nerve cell die every day without affecting
its performance significantly.

• it is non-linear and highly parallel.

• It can deal with information that is fuzzy, probabilistic, noisy or inconsis-
tent.

The advantage of parallel processing is that it allows the brain to simultaneously
identify different stimuli which in consequence allows for quick and decisive ac-
tions. The brain can solve complex problems that are hardly approachable with
traditional computers. A good example is the processing of visual information,
even a baby is much better and faster at recognizing objects, faces, etc., than the
most advance computer. While the computer’s speed is a million times faster
than a human’s neural network, the brain have a large number of processors
compared to computers.

Biological neural networks provide the best source of knowledge for devel-
oping powerful engineering neural networks.

2.2.1 Neurons

The brain contains many billions (about 1011) of nerve cells or “neurons”. Neu-
rons are organized into a very complicated intercommunicating network. Typi-
cally each neuron is physically connected to tens of thousands of others neurons.
Using these connections neurons can pass electrical signals between each other.

Individual neurons are complicated. They have a myriad of parts, sub-
systems, and control mechanisms. There are over one hundred different classes
of neurons, depending on the classification method used. The artificial neural
networks try to replicated the most basics elements of this complicated and
powerful organism.

Figure 2.15 shows the schematic of a typical and simple neuron. The cell
body or soma is the central part of the neuron, connected to the cell body are
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Figure 2.15: Typical neuron.

the dendrites, cellular extensions with many branches, and metaphorically this
overall shape and structure is referred to as a dendritic tree. This is where
the majority of input to the neuron occurs. Extending from the cell body is
the axon, a finer, cable-like projection, which eventually arborizes into strands
and substrands. The axon carries nerve signals away from the cell body. The
axon terminal contains synapses or synaptic junctions transmitting the signal
to other neuron’s dendrites or cell bodies.

The transmission of a signal from one cell to another at a synapse is a com-
plex chemical process, in which ion channels allow ions (sodium Na+, calcium
Ca+, and chloride Cl−) to move into and out of the cell. Ion channels control
the flow of ions across the cell membrane by opening and closing in response to
voltage changes and both internal and external signals. The membrane poten-
tial is the difference in electrical potential between the interior of a neuron and
the surrounding extracellular medium. Current flowing into the cell changes the
membrane potential to less negative or more positive values. If the membrane
potential rises above a threshold level, a positive feedback process is initiated,
and the neuron generates an action potential of fixed strength and duration. It
is said then that the cell has “fired”. After firing, the cell has to wait for a time
called “refractory period” before it can fire again. For more information refer
to [9]

2.2.2 Artificial neural networks

As mention in the previous section, the brain contains billions of neurons. Each
neuron is connected to thousands of others neurons. Through these connections
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Figure 2.16: Basic artificial neuron.

(synapses) neurons can pass electrical signal between each other. These synaptic
connections have varying strength which allows the influence of a given neuron
on one of its neighbors to be strong, weak or just do nothing. Many aspects of
brain function, particularly the learning process, are closely associated with the
adjustment of these connections strengths. Brain activity is then represented
by particular patterns of firing activity among this network of neurons. So, it
is this simultaneous cooperative behavior of many simple processing units the
source of the enormous computational power of the brain.

Artificial neural networks are electronic models based on the neural structure
of the brain. Neural networks consists of many simple processing elements (PE)
and weighted connections. These processing elements operate in parallel to solve
specific problems. Their functions are determined by the networks structure,
connections strengths and the processing performed by each element.

Neural networks can be though as devices that accept inputs and pro-
duce outputs. Basically, a biological neuron receives inputs from other sources
through synapses of other neurons, then the soma combines them in some way,
performs a generally non-linear operation on the result and finally outputs the
final result through the axon and the synapse. Even when there are many vari-
ations of neuron, all natural neurons have the same four basic components. An
artificial neuron simulate the four basic functions of a natural neuron. Figure
2.16 shows a fundamental representation of an artificial neuron.

In the model shown in Fig. 2.16, various inputs to the neuron are represented
by Xi (i = 0, 1, ..., n). Each of these inputs are multiplied by a connection
weight wi. In the simplest case, these products are summed, and pass through
a transfer function to generate the result, and then the output. This electronic
implementation is possible with other networks structures which utilize different
summing functions as well as different transfer functions.
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Connections

The weights wi in Fig. 2.16 for (i = 0, 1, ..., n) represent the strength of the
synaptic connections from neuron ith. The connections define the flow through
the network and modulates the amount of information passing between to the
processing element.

Connections weights are adjusted during the learning process that capture
the information. Connections weights that have positive values are “excitatory”
connections. Connections weights with negative values are “inhibitory” con-
nections. And those connections with a zero value are the same as not having
connections present. By allowing a subset of all the possible connections to have
nonzero values, sparse connectivity between processing elements (PEs) can be
stimulated, because it is often desirable for a PE to have a internal bias value
(threshold value).

Processing elements

The PE is the portion of the neural network where all the computing is per-
formed. There are two important qualities that a PE must possess:

• PEs require only local information. The information necessary for a pro-
cessing element to produce an output value must be present at the inputs
and resides within the PE.

• PEs produce only one output value.

These two qualities allow neural networks to operate in parallel. Mathemat-
ically, the output of a PE is a function of its inputs and its weights.

Y = F (X, wi). (2.24)

2.2.3 Processing elements transfer function

PEs transfer functions, also referred as activation functions can change the
behavior of the network. Although the number of PE transfer functions possible
is infinite, five are regularly employed by the majority of neural networks:

• Linear function

• Step function

• Ramp function

• Sigmoid function

• Gaussian function
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With the exception of the linear function, all of these functions introduce a
nonlinearity in the network dynamics by bounding the output value within a
fixed range. Each function is shown in Fig. 2.17 (a-e).

Linear function

The linear function Fig. 2.17 (a), produces a linear output from the input X

according to:

f(X) = αX (2.25)

where the X ranges over the real numbers and α is a positive scalar. If α = 1
is equivalent as removing the transfer function.

Step function

The step function Fig. 2.17 (b) it produces two values a and b. If the input X

is higher than a predefined value c (threshold value) the function produce the
value a; otherwise will produce the value b, where a and b are scalars.

f(X) =

⎧⎨
⎩

a, if x ≥ c

b, if x ≤ c
(2.26)

A particular step function, the “unit step function” or ”Heaviside step func-
tion” is a discontinuous function whose value is zero for negative argument and
one for positive argument

f(X) =

⎧⎨
⎩

1, if x ≥ 0

0, otherwise
(2.27)

this kind of functions is common in neural networks, and have been implemented
in models like the McCulloch and Pitts [1], and the Hopfield neural network [2].

Ramp function

The ramp function Fig. 2.17 (c). It can be though as a combination of the step
function and the linear function. The functions has an upper and a lower bound
and posses a linear response between the bounds.

f(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a, ifX ≥ a

X, if|X| < a

−a, ifX ≤ a

(2.28)
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Sigmoid function

The sigmoid function Fig. 2.17 (d). Is a continuous version of the ramp func-
tion. Is a mathematical function that produces a sigmoid curve (S-shape curve).
Sigmoid functions are often used in neural networks to introduce nonlinearity in
the model and/or to bound signals to within a specified range. A popular neural
net element computes a linear combination of its input signals, and applies a
bounded sigmoid function to the result; this model can be seen as a “smoothed”
variant of the classical threshold neuron.

f(X) =
1

1 + e−αX
(2.29)

where α > 0 provides an output from 0 to 1. It is important to note that there
is a relationship between Eq. 2.27 and Eq. 2.29. When α = ∞ in Eq. 2.29,
the slope of the sigmoid function between 0 and 1 become step, and in effect
become the Heaviside function.

Two alternatives to the sigmoid functions are the hyperbolic tangent

f(X) = tanh(X) (2.30)

which ranges from −1 to 1, and the augmented ratio of squares

f(X) =

⎧⎨
⎩

X2

1+X2 , ifx > 0

0, otherwise
(2.31)

which ranges from 0 to 1.
Sigmoid functions are very suitable for implementation in analog VLSIs be-

cause they can be implemented by using differential-pair circuits.

Gaussian function

The gaussian function Fig. 2.17 (e). Is a radial function that requires a variance
value v > 0.

f(X) = αe−
(X−b)2

v (2.32)

where α is the height of the Gaussian peak, b is the position of the center of the
peak, and v is the variance which controls the width of the “bump”.

2.2.4 Learning

Learning is one of the most important features on neural networks. Since all
knowledge is encode in weights, “learning” is define as a change in connection
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weight values.

On the network level, a weight represents how frequent the receiving unit
has been activated simultaneously with the sending unit. Hence, weight change
between two units depends on the frequency of both neurons firing simultane-
ously. In other words, the weight between two neurons will increase if the two
neurons activate simultaneously; it is reduced if they activate separately. This
form of weight change is called “Hebbian learning” [10], which provides a sim-
ple mathematical model for synaptic modification in biological networks. Its
most general form is expressed as:

Δwi,j = xixj (2.33)

or the change in the ith synaptic weight wi,j is the product of the output of
unit i and unit j. Several modifications but the basic principle still accepted.

There are several ways of learning techniques. The most important are:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

Supervised learning

Supervised learning is a process that incorporates an external teacher, it requires
sample input-output pairs from the function to be learned, the data are available
and are used to calculate weight change. In other words, supervised learning
requires a set of questions with the right answers.

Supervised learning is further classified into two subcategories: structural
learning and temporal learning. Structural learning is concerning with finding
the best possible input/output relationship for each individual pattern pair.
Temporal learning is concerned with capturing a sequence of patterns necessary
to achieve some final outcome. In temporal learning, the current response of
the network is dependent on previous inputs and responses.

Unsupervised learning

Unsupervised learning, also called self-organization, is a process that does not
require external teacher, it relies upon local information during the entire learn-
ing process. Unsupervised learning organizes presented data and discovers its
emergent collective properties. Examples of unsupervised learning include, Heb-
bian learning and competitive learning.
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Reinforcement learning

Reinforcement learning is the problem faced by an agent that must learn be-
havior through trial-and-error interactions with a dynamic environment. Rein-
forcement learning differs from the supervised learning problem in that correct
input/output pairs are never presented, nor sub-optimal actions explicitly cor-
rected. In other words the learner is not told which actions to take, but instead
must discover which actions yield the most reward by trying them.

2.3 Summary

This section gave a brief explanation of basic concepts and terminology regard-
ing CMOS circuits as well as artificial neural networks. For a comprehensive
explanation, I would refer the reader to “CMOS circuit design, layout and

simulations” [11], Theoretical Neuroscience [9], Introduction to the theory

of Neural Computation [12] and Artificial Neural Networks [13].



Chapter 3

Temperature receptor

circuit

Sensory system is a part of the nervous system responsible for processing sen-
sory information. The sensory system detects, transforms, transfers and pro-
cesses stimuli from the environment. It consists of sensory receptors (that
receive and transform stimuli from the external environment), neural pathway
(that transfer the information to the brain), and parts of the brain (that pro-
cesses the information).

The sensory receptors are specialized endings of afferent neurons (sensory
neurons), or separate cells that affect ends of afferent neurons. They function
as the first component in the sensory system. When activated by stimuli, sen-
sory receptors collect information about external and internal environment. In
response to the stimuli, the sensory receptor initiates sensory transduction, a
process by which the physical energy of the stimuli is converted into electrical
impulses that are later transferred to the brain.

Each sensory receptor responds primarily to a single kind of stimulus, and
they are often classified into four categories. 1) Mechanoreceptors detect
changes in pressure, position, or acceleration; include receptors for touch, hear-
ing and joint position. 2) Thermoreceptors detect changes in the temperature.
3) Chemoreceptors detect ions or molecules; include receptors for olfaction and
taste. 4) Photoreceptors that respond to light (vision).

This chapter focuses on the implementation of Thermoreceptors (special-
ized neurons which are designed to be sensitive to changes in temperature).
Thermoreceptors are found all over the body, in the skin to provide the brain
with information about environmental temperature, and inside the body they
are part of the body’s complex and interconnected series of systems which are

40
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designed to keep the body in balance.

It is important to note that every sensory system has a threshold. In other
words, there is a minimum amount of the physical stimulus needed for the sen-
sory system to elicit a response. If the stimulus is too small (under the sensory
neuron’s threshold; sub-threshold) no pulse is generated and the stimulus is not
perceived. Therefore, the key idea is to use excitable circuits for implementing
this kind of systems. There are some studies based on the respond of excitable
neurons to temperature changes. A temperature increase causes a regular and
reproducible increase in the frequency of the generation of pacemaker potential
in most Aplysia and Helix excitable neurons [14]. The Br neuron shows its
characteristic bursting activity only between 12 and 30◦C. Outside this range,
the burst pattern disappears and the action potentials become regular.

In this chapter, a sub-threshold CMOS circuit that changes its dynamical
behavior (i.e., oscillatory or stationary behaviors) around a given threshold tem-
perature is proposed. The threshold temperature can be set to a desired value by
adjusting an external bias voltage. The circuit consists of two pMOS differential
pairs, two capacitances, and two resistors with low temperature dependence.

The circuit operation was fully investigated through theoretical analysis, ex-
tensive numerical simulations and circuit simulations using the Simulation Pro-
gram of Integrated Circuit Emphasis (SPICE). Moreover, the operation of the
proposed circuit was demonstrated experimentally using discrete MOS devices.
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3.1 The model

The temperature receptor’s operation principle is shown in Fig. 3.1. The model
consists of a nonlinear neural oscillator that changes its operation frequency
when it receives an external perturbation (temperature). There are many mod-
els of excitable neurons, but only a few of them have been implemented on
CMOS LSIs, e.g., silicon neurons that emulate cortical pyramidal neurons [15],
FitzHugh-Nagumo neurons with negative resistive circuits [16], artificial neuron
circuits based on by-products of conventional digital circuits [17] - [19], and
ultralow-power sub-threshold neuron circuits [20]. Our model is based on the
Wilson-Cowan system [21] because it is easy to both, analyze theoretically and
implement in sub-threshold CMOS circuits.

The dynamics of the temperature receptor can be expressed as:

τ u̇ = −u +
exp (u/A)

exp (u/A) + exp (v/A)
, (3.1)
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v̇ = −v +
exp (u/A)

exp (u/A) + exp (θ/A)
, (3.2)

where τ represents the time constant, θ is an external input, and A is a constant
proportional to temperature. The second term of the r.h.s. of Eq.(3.1) repre-
sents the sigmoid function, a mathematical function that produces an S-shaped
(sigmoid) curve. The sigmoid function can be implemented in VLSIs by using
differential-pair circuits, making this model suitable for circuit implementation.

To analyze the system operation, it is necessary to calculate its nullclines.
Nullclines are curves in the phase space where the differentials u̇ and v̇ are equal
to zero. The nullclines divide the phase space into four regions. In each region
the vector field follows a specific direction. Along the curves the vector field is
either completely horizontal or vertical; on the u nullcline (u̇=0) the direction
of the vector is vertical; and on the v nullcline (v̇=0), it is horizontal. The u

and v nullclines indicating the direction of vector field in each region are shown
in Fig. 3.2.

When the vector field is plotted on the phase plane it is called trajectory.
The trajectory of the system depends on the time constant τ , which modifies
the velocity field of u. In Eq. (3.1), if τ is large, the value of u decreases, and
for small τ , u increases. Figures 3.3(a) and (b) show trajectories when τ = 1
and τ << 1. In the case where τ << 1, the trajectory on the u direction is
much faster than that in the v, so only close to the u nullcline movements of
vectors in vertical direction are possible.

Let us suppose that θ is set at a certain value where the threshold tem-
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perature (Tc), which is proportional to A is 27◦C. The threshold temperature
represents the threshold temperature we desire to measure. When θ changes,
the v nullcline changes to a point where the system will be stable as long as
the external temperature is higher than Tc. This is true because the system is
unstable only when the fixed point exists in a negative resistive region of the
u nullcline. The fixed point, defined by u̇ = v̇ = 0 is represented in the phase
space by the intersection of the u nullcline with the v nullcline. At this point the
trajectory stops because the vector field is zero, and the system is thus stable.
On the other hand, when the external temperature is below Tc, the nullclines
move, and this will correspond to a periodic solution to the system. In the phase
space we can observe that the trajectory does not pass through the fixed point
but describes a closed orbit or limit cycle, indicating that the system is oscilla-
tory. Figure 3.4 shows examples when the system is stable (a) and oscillatory
(b). In (a) the external temperature is greater than the threshold temperature,
hence, the trajectory stops when it reaches the fixed point, and the system is
stable. In (b), where the temperature changes below the threshold temperature,
the trajectory avoids the fixed point, and the system becomes oscillatory.

Deriving the nullclines equation (u̇ = 0) and equaling to zero, the local
minimum (u−, v−) and local maximum (u+, v+) representing the intersection
point of the nullclines are given by:

u± =
1±√1− 4A

2
, (3.3)

v± = u± + A ln (
1

u±
− 1), (3.4)

The nullclines giving the local minimum and local maximum (u±, v±) are shown
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in Fig. 3.5.
From the local minimum and maximum equations (Eq. (3.3) and Eq. (3.4)),

the nullcline equation (v̇ = 0) and remembering that A is proportional to tem-
perature, the relationship between θ and the temperature, can be written as:

θ± = u± + A ln (
1
v±
− 1). (3.5)

When τ << 1 the trajectory jumps from one side to the other side of the u

nullcline, so only along the u nullcline movement in the v direction are possible
as shown in Fig. 3.3(b). It is necessary to emphasis this fact because this
characteristic is necessary for the system operation; thus, τ << 1 is assumed.
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3.1.1 Stability of the Wilson-Cowan system

Wilson and Cowan [21] studied the properties of a nervous tissue modeled by
populations of oscillating cells composed of two types of interacting neurons:
excitatory and inhibitory ones. The Wilson-Cowan system has two types of
temporal behaviors, i.e. steady state and limit cycle. According with the stabil-
ity analysis in [21], the stability of the system can be controlled by the magnitude
of the all the parameters.

A simplified set of equations with and excitatory node u and an inhibitory
node v, representing the Wilson-Cowan system are given by Eqs. (3.1) and
(3.2). The nullclines of this system, which are pictured in Fig. 3.2, are given
by:

v = u + A ln(
1
u
− 1) (3.6)

for the u nullcline (Eq. (3.1) = 0), and

v =
eu/A

eu/A + eθ/A
(3.7)

for the v nullcline (Eq. (3.2) = 0).
For easy analysis, let us suppose that A is a constant. In such a case, there

are some important observations for the stability of the system.

• There is a threshold value of θ bellow which the limit cycle activity can
not occurs (θ < x; see Fig. 3.6).

• There is a higher value of θ above which the system saturates and the
limit cycle activity is extinguished (θ > y).

• Between these two values the system exhibit limit cycle oscillation (area
between θ’s lower threshold x and θ’s upper threshold y).

Let us suppose that the value of A is fixed to 0.03, in this cases, depending on
the magnitude of the parameter θ (external input) the Wilson-Cowan oscillator
will show different behaviors. Figure 3.6 shows the areas in which the system
exhibits (or not) limit cycle activity. The threshold values x and y are shown
in the figure.

The nullclines and trajectories for different values of θ are shown in Figs. 3.7
and 3.9. In Figure 3.7 (a), θ was set to 0.1, it can observed from the figure that
the system is exhibiting limit cycle oscillations. Thus the system is unstable.
When the value of θ is reduced to 0.09, show in Fig. 3.7 (b). It can be observed
that the trajectory stops at the fixed point. The fixed point at this area is an
attractor, i.e. a stable fixed point. Thus the system is stable. Figure 3.8 show
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the position of the v nullclines when θ = 0.09 and θ = 0.1. The other case is
shown is Fig. 3.9. In figure 3.9 (a) θ is set to 0.9, at this point the system is
oscillatory. When θ is increased, (θ = 0.91) the system is stable.

It could be observed that depending on the parameter θ (the external input)
the stability of the system can be controlled. It is important to notice that
the stability also depends on the magnitude of A, and that A is proportional
to the temperature. These observations are the basis of the operation of the
temperature receptor system. As explained before, the value of the input θ is
set to a fix value; so, as temperature changes the system behavior also changes
i.e. stable and oscillatory.

3.2 Circuit implementation

The temperature receptor circuit is shown in Fig. 3.10. The sensor section
consists of two pMOS differential pairs (M1 −M2 and M3 −M4) operating in
their sub-threshold region. External components are required for the operation
of the circuit. These components consist of two capacitors (C1 and C2) and
two temperature-insensitive off-chip metal-film resistors (g). In addition, for
the experimental purpose, two current mirrors were used as the bias current
of differential pairs. Note that for the final implementation of the temperature
receptor a current reference circuit with low-temperature dependence [22] should
be used.

Differential-pairs sub-threshold currents, I1 and I2, are given by [23]:

I1 = Ia
exp (κu/vT )

exp (κu/vT ) + exp (κv/vT )
, (3.8)
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I2 = Ia
exp (κu/vT )

exp (κu/vT ) + exp (κθ/vT )
, (3.9)

where Ia represents the differential pairs bias current, vT is the thermal voltage
(vT = kT/q), k is the Boltzmann’s constant, T is the temperature, and q is the
elementary charge.

The circuit dynamics can be determined by applying Kirchhoff’s current law
to both differential pairs, which is represented as follows:

C1u̇ = −gu +
Ia exp (κu/vT )

exp (κu/vT ) + exp (κv/vT )
, (3.10)

C2v̇ = −gv +
Ia exp (κu/vT )

exp (κu/vT ) + exp (κθ/vT )
, (3.11)

where κ is the sub-threshold slope, C1 and C2 are the capacitances representing
the time constants, and θ is bias voltage.

Note that Eqs. (3.10) and (3.11) correspond to the system dynamics (Eqs.
(3.1) and (3.2)) previously explained. Therefore, applying the same analysis, the
local minimum (u−, v−) and local maximum (u+, v+) for the circuit equations
can be calculated, expressed by:

u± =
Ia/g ±√

(Ia/g)2 − 4vT Ia/(κg)
2

, (3.12)

v± = u± +
vT

κ
ln (

Ia

gu±
− 1), (3.13)

and the relationship between the external bias voltage (θ) and the external
temperature (T ):

θ± = u± +
vT

κ
ln (

Ia

gv±
− 1). (3.14)

where the relation with the temperature is given by the thermal voltage defined
by vT = kT/q. At this point the system temperature is equal to the threshold
temperature which can be obtained from:

Tc =
qκ(θ± − u±)
k ln ( Ia

gv±
− 1)

. (3.15)

The threshold temperature Tc can be set to a desired value by adjusting the
external bias voltage (θ). The circuit changes its dynamic behavior, i.e., os-
cillatory or stationary behaviors, depending on its operation temperature and
bias voltage conditions. At temperatures lower than Tc the circuit oscillates,
but the circuit is stable (does not oscillate) at temperatures higher than Tc.
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Figure 3.11 shows the relation between the bias voltage θ± and the threshold
temperature Tc with κ = 0.75; θ− for u and v local minimums and θ+ for u and
v local maximums. When θ− is used to set Tc, the system is stable at external
temperatures higher than Tc; while when θ+ is used, the system is stable when
the external temperature is lower than Tc and oscillatory when it is higher than
Tc.

3.3 Simulations and experimental results

Circuit simulations were conducted by setting C1 and C2 to 0.1 pF and 10 pF,
respectively, g to 1 nS, and reference current (Ib) to 1 nA. Note that for the
numerical and circuit simulations, two current sources were used instead of the
current mirrors. The parameter sets used for the transistors were obtained from
MOSIS AMIS 1.5-μm CMOS process. Transistor sizes were fixed at L = 40 μm
and W = 16 μm. The supply voltage was set at 5 V. Figure 3.12 shows the
nullclines and trajectory of the circuit with the bias voltage (θ) set at 200 mV
and the external temperature (T ) set at 27◦C; the system was in oscillatory
state. Figure. 3.13 shows the nullclines when the system is stationary with the
bias voltage (θ) set at 90 mV.

The output waveform of u for different temperatures is shown in Fig. 3.14.
The bias voltage θ was set to 120 mV, when the external temperature was 20◦C
the circuit was oscillating, but when the temperature increases up to 40◦C the
circuit becomes stable. Figure 3.15 shows the simulated oscillation frequencies
of the circuit as a function of the temperature with the bias voltage set to 120
mV. The frequency was zero when the temperature was above the threshold
temperature Tc = 36◦C, and the frequency increases at temperatures lower
than Tc.

Through circuit simulations, by setting the values for the threshold temper-
ature (Tc) and changing the bias voltage (θ) until the system changed its state,
it was established a numerical relation between Tc and θ. When comparing this
relationship between θ and Tc obtained through different methods, it was found
that there is a mismatch between the numerical simulations and the circuit sim-
ulations. This difference might be due to the parameters that are included in
the SPICE simulation but omitted in the numerical simulation and theoretical
analysis. Many of these parameters might be temperature dependent; thus,
their value changes with temperature, and as a result of this change, the Tc

characteristic changes. The difference between the two simulations is shown in
Fig. 3.16

The temperature receptor’s operation was successfully demonstrated using
discrete MOS circuits. Parasitic capacitances and a capacitance of 0.033 μF
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were used for C1 and C2 respectively, and the resistances (g) were set to 10 MΩ.
The input current (Ib) for the current mirrors was set to 100 nA and an output
current (Ia) was measured to be of 78 nA.

Measurements were performed at room temperature (T = 23◦C). With the
bias voltage (θ) set to 500 mV the voltages of u and v were measured. Under
these conditions, the circuit was oscillating. The voltages of u and v for different
values of θ were also measured. The results showed that for values of θ lower
than 170 mV, the circuit did not oscillate (was stable), but that for values
higher than 170 mV, the circuit became oscillatory. Figures 3.17 and 3.18
shows the oscillatory and stable states of u and v with θ set to 170 and 150 mV,
respectively.

In addition, the nullclines (steady state voltage of the differential pairs) were
measured. The v nullcline (steady state voltage v of differential pair M3 −M4)
was measured by applying a variable DC voltage (from 0 to 1 V) on u and
measuring the voltage on v. For the measurement of the u nullcline (steady
state voltage u of differential pair M1 −M2), a special configuration of the first
differential pair of the circuit was used. Figure 3.19 shows the circuit used for
the u nullcline measurement. A variable DC voltage was applied (from 0 to 1 V)
on v. For each value of v the voltage on u1 was changed (from 0 to 1) and then
measured the voltage on uo and u1. This enabled us to obtain the u nullcline
by plotting the points where uo and u1 had almost the same value. In this way,
it was obtained a series of points showing the shape of the u nullcline. The
series of points was divided into three sections, and the average was calculated
to show the u nullcline. Figure 3.20 shows the u nullcline divided into the three
sections used for the average calculation. The trajectory and nullclines of the
circuit with θ set to 500 mV are shown in Fig. 3.21.

Notice that in the experimental results there is a difference in the amplitude
of the potentials u and v with respect to results obtained from the numerical
and circuit simulations. This is due to the difference in the bias current of the
differential pairs. From Eqs. (3.12) and (3.13), it can observed that by making
g and Ib (used in numerical and circuit simulations) the same value, they cancel
each other out; however, the output currents of the current mirrors were in the
order of 78 nA, and g was set to 100 nS. This difference caused the decrease in
the potentials amplitudes, as shown in Figs.3.12 and 3.21.

Measurements performed at different temperatures were made. The bias
voltage (θ) was set to a fixed value and the external temperature was changed
to find the value of the threshold temperature (Tc) where the circuit changes
from one state to the other. With the bias voltage θ set to 170 mV at room
temperature (T = 23◦C), the circuit oscillated. When the external temperature
was increased to (T = 26◦C), the circuit changed its state to stationary (did not
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oscillate). Once again, when the external temperature was decreased one degree
(T = 25◦C), the circuit started to oscillate; therefore, the threshold temperature
was Tc = 26◦C. Measures of the threshold temperature (Tc) for different values
of the bias voltage (θ) were made.

In order to compare experimental results with, SPICE results and theoretical
ones, the actual κ (sub-threshold slope) of the HSPICE model was measured
and found to be in the order of 0.61. The threshold temperature for each value
of θ obtained experimentally compared with the threshold temperature obtained
with theoretical analysis using Eq. (3.14) (with κ = 0.61) is shown in Fig. 3.22.
The curves have positive slopes in both cases. This is because the temperature
difference between one value of bias voltage and the other decreases as the
bias voltage increases. For θ= 140 and 150 mV the experimentally obtained
threshold temperatures (Tc) are 0◦C and 13◦C, respectively, a difference of 13◦C.
For θ= 240 and 250 mV the threshold temperatures (Tc) are 54◦C and 56◦C,
respectively: a difference of only 2◦C.

The difference between the experimental, HSPICE, theoretical results is due
to the leak current caused by parasitic diodes between the source (drain) and
the well or substrate of the discrete MOS devices, and the mismatch between
the MOS devices. In addition, because of the leak current, when temperature
increases, the stable voltages of u and v also increase. Figures 3.23 and 3.24
shows the stationary state with θ set to 140 mV and temperature set to 23 and
75◦C, respectively.
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3.4 nMOS transistor with temperature depen-

dence

The structure of a nMOS transistor showing the temperature-sensitive drain
to bulk leakage current (Idb) is shown in Fig. 3.25. The drain current of the
transistor is thus given by the sum of the drain-bulk current (Idb) and the
channel current (Ids).

Id = Ids + Idb (3.16)

and remembering that the saturated drain to source current when the transistor
is operating in the sub-threshold region is given by

Ids = I0e
κ(Vg−Vs)/VT (3.17)

the drain current becomes

Id = I0e
κ(Vg−Vs)/VT + Idb (3.18)
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Figure 3.27: Differential pair.

where I0 represents the zero bias current (fabrication parameter), and Vs the
common source and bulk voltage.

The drain-bulk current (Idb) is given by:

Idb = Gdb(Vdd − Vb) (3.19)

where Vdd is the supply voltage, Vb the bulk potential, and Gdb the temperature-
dependent drain-bulk conductance expressed as:

Gdb = GSe
Eg(Tnom)

VTnom
−Eg(T )

VT (3.20)

where GS represents the bulk junction saturation conductance (1 × 10−14),
Eg(X) is the energy gap, and Tnom the nominal temperature (300.15 K). The
temperature dependence of the energy gap is modeled by

Eg(T ) = Eg(0)− αT 2

β + T
(3.21)

Si experimental results give Eg(0) = 1.16 eV, α = 7.02× 10−4 , and β = 1108.
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Numerical simulations where carried out. Figure 3.26 shows the drain-bulk
current of a single transistor as the temperature changes. It can be observe that
when the temperature is less than 80 ◦C the drain-bulk (Idb) current is in the
order of pF (≈ 30 pF), but as temperature increases, Idb also increases in an
exponential manner reaching values in the order of nA (≈ 16 nA for T = 140
◦C).

The same analysis can be applied to pMOS transistors, but in addition the
leak current from the p-substrate to the n-Well is added to the drain current.

3.5 Differential pair with temperature depen-

dence

Figure 3.27 shows a differential pair circuit consisting of two nMOS transistors
(m1 and m2), and an ideal current source (Ib). According with the analysis
done in the previous section, the drain currents (I1 and I2) are

I1 = I0e
κ(u−Vs)/VT + Idb (3.22)

I2 = I0e
κ(v−Vs)/VT + Idb (3.23)

Since Ib = I1 + I2, we obtain

e−κVs/VT =
Ib − 2Idb

I0(eκu/VT + eκv/VT )
(3.24)
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Figure 3.29: Comparison of temperature receptor oscillations, between HSPICE
results and theoretical results without leak currents. T = 127 ◦C

From Eqs. (3.22) and (3.23), the drain currents become

I1 =
(Ib − 2Idb)eκu/VT

eκu/VT + eκv/VT
+ Idb (3.25)

I2 =
(Ib − 2Idb)eκv/VT

eκu/VT + eκv/VT
+ Idb (3.26)

From Eq. (3.24) the common source voltage Vs is

Vs =
VT

κ

{
ln I0 + ln (eκu/VT + eκv/VT )− ln (Ib − 2Idb)

}
(3.27)

Equations (3.25) and (3.26) were plotted and compared with the SPICE
simulations results. The MOSIS AMIS 1.5-μm CMOS parameters (LEVEL 3)
were used. Transistor sizes were set to W/L = 4 μm/1.6 μm. Ib was set to
100 nA, and v was set to 0.5 V. From the SPICE simulations, the measured κ

was found to be 0.47, I0 was 18.8 pA when T = 300.15 ◦K, and 62.6 pA when
T = 350.15 ◦K. We can observe that the theoretical results agreed with the
SPICE results.

Then, the dynamics of the temperature receptor circuit (Eqs. (3.10) and
(3.11)) with the temperature dependence analysis become

C1u̇ = −gu +
(Ia − 2Idb − 2Iws) exp (κu/vT )

exp (κu/vT ) + exp (κv/vT )
+ Idb + Iws, (3.28)

C2v̇ = −gv +
(Ia − 2Idb − 2Iws) exp (κu/vT )

exp (κu/vT ) + exp (κθ/vT )
+ Idb + Iws, (3.29)
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Figure 3.30: Comparison of temperature receptor oscillations, between HSPICE
results and theoretical results including leak currents.

To confirm the effect of the leak currents in the temperature receptor sys-
tem, a comparative analysis between HSPICE and the theoretical results was
conducted without and with leak current. The comparison between HSPICE
results and theoretical results without leak currents effect with the bias voltage
θ set to 0.5 V and the external temperature set to T = 127 ◦C, is shown in Fig.
3.29. It can be seen that in this case the results between the theory and the
SPICE are very different, but in the same conditions when the effect of the leak
current is include in the theory the results are very similar, Fig. 3.30.

3.6 Summary

A temperature receptor circuit was developed. The receptor consists of a sub-
threshold CMOS circuit that changes its dynamic behavior, i.e., oscillatory or
stationary behavior, at a given threshold temperature. The circuit’s operation
was analyzed theoretically and through numerical and circuit simulations. Fur-
thermore, the operation of the circuit was demonstrated using discrete MOS
devices through experimental results. The threshold temperature (Tc) was set
to a desired value by adjusting the external bias voltage (θ). The circuit changed
its state between oscillatory and stationary when the external temperature was
lower or higher than the threshold temperature (Tc). Moreover, the circuit null-
clines were experimentally calculated, indicating the trajectory of the circuit
when it is in oscillatory state.



 



Chapter 4

Noise in neural network

Noise permeates every level of the nervous system, from the perception of sen-
sory signals to the generation of motor responses. In general, noise cannot be
removed from a signal once it has been added. Therefore, it is though that
neurons and neural networks may employ different strategies that can exploit
the properties of noise to improve the efficiency of neural operations.

In recent years the extent to which noise is present and how noise shapes the
structure and function of nervous systems have been studied. To this extend,
it is well known that there are numerous noise (fluctuation) sources in nervous
systems. External sensory stimuli are intrinsically noisy, at the first stage of
perception energy in sensory stimulus is converted into a chemical signal (e.g.

photon absorption arriving photoreceptors) or mechanical signal (e.g. movement
of hair cells in hearing); the subsequent transduction process amplifies the sen-
sory signal (with the noise) and converts it into an electrical one [24]-[26]. In
each neuron, noise accumulates awing to randomness in the cellular machinery
that processes information [27]. At the biochemical and biophysical level there
are many stochastic processes at work in neurons. Electrical noise in neurons
caused by the opening and closing of ion channels causes membrane potential
fluctuations even in the absence of synaptic inputs [28] and also affects the
propagation of action potential in axons [29]. Synaptic noise is caused by ran-
dom events in the synaptic transmission machinery, such as protein production
and degradation, fusing of synaptic vesicles, diffusion and binding of signaling
molecules to receptors [30]-[33]. These, suggest that neural systems manage and
may use noises to improve information processing [32].

Neural systems exploit noises in different ways, and one approach would be
the stochastic resonance (SR) phenomenon. Stochastic resonance [26], [34] refers
to a situation where the response of a system can be optimized by the addition
of optimal noise levels. Since it was first discovered in cat visual neurons [35],

64



4.1. MODEL AND NUMERICAL SIMULATIONS 65

SR-like effects have been demonstrated in a range of sensory systems. These in-
clude crayfish mechanoreceptors [36], shark multimodal sensory cells [37], cricket
cercal sensory neurons [38], and human muscle spindles [39].

Moreover, it has been observed that SR is further enhanced when a cou-
pled array of similar nonlinear elements responds to the same signal. This
phenomenon, known as array-enhanced stochastic resonance (AESR), was first
observed in chains of nonlinear oscillators [40] and latter in ion channels [41], in
arrays of FitzHugh-Nagumo neuron models [42], [43] and in a globally coupled
network of Hodgkin-Huxley neuron models [44], [45].

Recently, Schweighofer et.al. [46] reported that the spiking behavior of a
network of coupled inferior olive cells became chaotic for moderate electrical
coupling, under these circumstances the input-output information transmission
increased. In addition, in [47], Stacy et.al. demonstrated that an array of sim-
ulated hippocampal CA1 neurons exhibited SR-like behavior where an optimal
correlation value between the sub-threshold input and output was obtained by
tuning both the noise intensity and the coupling strength between the CA1
neurons; and, the correlation was further increased as the number of neurons
increased.

Motivated by these findings; this chapter proposes a neural network model
that exhibit AESR. The model is composed of Wilson-Cowan neural oscilla-
tors [21]. In the network, each neuron device is electrically coupled to its
four neighbors to form a 2D grid network. All neurons accept a common sub-
threshold input, and no external noise source is required as each neuron acts
as a noise source to other neurons. The output of the network is defined as
the sum of all the neurons. Numerical and circuit simulations were performed
using standard (typical) device parameters. It was confirmed that without the
electrical coupling, the circuit network exhibited standard SR behavior; and the
network’s behavior improved with the coupling strength.

4.1 Model and numerical simulations

The network model is illustrated in Fig. 4.1. The network has N × N neural
oscillators consisting of the Wilson-Cowan neural oscillator model [21]. In the
network, each neural oscillator is electrically coupled to its four neighbors to
form a 2D grid network. The network dynamics are defined by

τ
dui,j

dt
= −ui,j + fβ1(ui,j − vi,j) + Iin +

∑
j �=i

gi,jUj,j , (4.1)

dvi,j

dt
= −vi,j + fβ2(ui,j − θ), (4.2)
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Figure 4.1: Network model.

Figure 4.2: Nullclines of a single oscillator for different θs.

where Ui,j is the potential observed at neuron ui,j , given by

Ui,j = ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j , (4.3)

In Eqs. (4.1) and (4.2), τ represents the time constant, N represents the size of
the matrix (N ×N), fβi(x− y) represents the sigmoid function defined by

fβi=1,2(x− y) =
exp (βix)

exp (βix) + exp (βiy)
, (4.4)

From Eq. (4.1), Iin is the common input to the neurons, and gi,j is the coupling
strength between oscillators i and j. The constant θ determines the state (be-
havior) of the neuron. Figure 4.2 shows the nullclines and trajectory of a single
oscillator for different θs (0.1 and 0.5). The remaining parameters were set at
τ = 0.1, β1 = 5 and β2 = 10. As shown in the figure, depending on the position
of the fixed point, the neuron exhibits oscillatory or excitatory behaviors. When
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θ is 0.5, the fixed point is located on nullcline u at which du/dv > 0. In this
case, the neuron exhibits limit-cycle oscillations (see Fig. 4.2(a)). On the other
hand, when θ is 0.1, the fixed point is located on nullcline u at which du/dv < 0.
In this case, the neuron exhibits excitatory behavior (see Fig. 4.2(b)) and it is
stable at the fixed point as long as an external stimulus is not applied.

As explained in the previous chapter, models whose dynamics are described
by Eqs. (4.1) and (4.2); are suitable for implementation in analog very large
scale integrations (VLSIs) because the sigmoid function can be implemented
using differential-pair circuits [23].

Excitability is observed in a wide range of natural systems. A list of examples
includes lasers, chemical reactions, ion channels, neural systems, cardiovascu-
lar tissues and climate dynamics, to mention only the most important fields
of research. Figure 4.3 show the nullclines, trajectory (dashed line) when the
system is perturbed and activity (small square) of a typical excitable system.
Common to all excitable systems is the existence of an “inactive” (or “rest”)
state (I), an “active” (or “firing”) state (A), and a “refractory” (or “recovery”)
state (R). If unperturbed, the system resides in the rest state; small perturba-
tions (sub-threshold input) result only in a small-amplitude linear response of
the system (see fig. 4.3; small square). For a sufficiently strong perturbation
(above-threshold input), however, the system can leave the rest state, going
through the firing and refractory states before it comes back to rest again (see
the nullclines in the figure). This response is strongly nonlinear and accompa-
nied by a large excursion of the system’s variables through phase space, which
corresponds to a spike. The system is refractory after such a spike, which means
that it takes a certain recovery time before another excitation can evoke a second
spike.

Figure 4.4 shows the numerical solution of Eqs. (4.1) and (4.2) with 1000×
1000 neurons, where the values of ui,j are represented in a black/white scale
(ui,j < 0.5 → black and ui,j ≥ 0.5 → white). The values of the remaining
parameters were set at τ = 0.01, θ = 0.1 (excitatory behavior), β1 = 5, β2 = 10,
Iin = 0, and the coupling strength gi,j = 0.035. The solution was numeri-
cally obtained by solving the ordinary differential equations (ODE) with the
fourth-order Runge-Kutta method. At each corner of the network, the values
represented by [i, j] → [0, j] and [i, j] → [N + 1, j] were treated as [i, j] → [1, j]
and [i, j] → [N, j], respectively. The initial conditions of the neurons were set
as follows: the neurons represented by white lines in the figure (t = 0) were
set to ui,j = 0.9 and vi,j = 0.6 (active mode), the neurons adjacent to each
white line were set to ui,j = 0.0001 and vi,j = 0.68 (refractory mode), the
remaining neurons were initially set to ui,j = 0.1 and vi,j = 0.3 (inactive or
excitatory mode). The inactive neurons next to the active neurons (white line)
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Figure 4.3: Nullclines and activity of a typical excitable system (Fitz-Hugh
Nagumo) showing the different operation states.

were excited (activated) through their connection with the active neurons, they
returned to the inactive mode following the pattern shown in the figure (t = 1.5
to t = 7.5) [48]. We used this continuous pattern as an internal noise source for
the network.

Numerical simulations were conducted with Iin set as periodic sub-threshold
pulses. The remaining parameters were set as previously described. The firing
of each neuron was recorded and converted into a series of pulses of amplitudes 1
and 0 corresponding to the firing and non-firing states, respectively. The output
(out) of the network was then defined by the sum of all the pulses divided by
the number of neurons. To evaluate the performance of the network, correlation
values C between converted sub-threshold input pulses (in) (in = 0 for Iin = 0,
in = 1 for Iin > 0) and the output (out) were calculated, by:

C =
〈in · out〉 − 〈in〉〈out〉√〈in2〉 − 〈in〉2√〈out2〉 − 〈out〉2 . (4.5)

Figure 4.5 shows the simulation results. As shown, the correlation value
between input and output increased with the coupling strength and reached a
maximum peak when the coupling was around 0.12 and then decreased again. In
addition, the noise levels was varied according to the number of spirals (number
of white lines set in the initial conditions; see Fig. 4.4). When the number of
spirals consisted of just a lines, the noise pattern became almost periodic; and it
cannot be considered noise. When there are many spirals, the neurons activities
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Figure 4.4: Numerical results of 1000 × 1000 network with θ = 0.1 (excitatory
behavior).

cancel each other and the pattern disappears. However, for a moderate number
of spirals, (≈ 30) the noise pattern was similar to that shown in Fig. 4.4 at t =
7.5, which resulted in a random pattern as the time increases. As shown in Fig.
4.5, for moderate noise levels (about 30 spirals) the correlation values reached
a maximum. These results suggest that, assuming signal transmission via an
array of neuron devices under a noisy environment where the noise strength is
fixed, the transmission error rate could be tuned by the coupling strength.

4.2 Circuit implementation

The Wilson-Cowan based neural oscillators have been implemented in the pre-
vious chapter. The oscillator consists of two pMOS differential pairs (m1 −m2

and m3 − m4), as shown in Fig. 4.6(a), two capacitors (C1 and C2) and two
resistors (R). The differential-pairs sub-threshold currents, I1 and I2, are given
by [23]:

I1 = Ib
exp (κu/VT )

exp (κu/VT ) + exp (κv/VT )
, (4.6)

I2 = Ib
exp (κu/VT )

exp (κu/VT ) + exp (κθ/VT )
, (4.7)

where Ib represents the differential pairs bias current, VT is the thermal voltage,
and κ is the sub-threshold slope. The circuit dynamics can be determined by
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Figure 4.5: Numerical results showing the Correlation value vs coupling strength
and noise levels.

applying Kirchhoff’s current law to both differential pairs as follows:

C1u̇ = −gu +
Ib exp (κu/VT )

exp (κu/VT ) + exp (κv/VT )
, (4.8)

C2v̇ = −gv +
Ib exp (κu/VT )

exp (κu/VT ) + exp (κθ/VT )
, (4.9)

C1 and C2 are capacitances representing the time constants, and θ is the bias
voltage. Note that Eqs. (4.8) and (4.9) correspond to the dynamics of the
network explained above (Eqs. (4.1) and (4.2), respectively) for Iin = 0 and
gi,j = 0. The simulated nullclines and the trajectory of a single neuron circuit
for θ = 0.13 are shown in Fig. 4.6(b).

Transient simulation results of the neuron circuit are shown in Fig. 4.7(a).
In the figure θ was initially set at 0 V (in a relaxing state), and the neuron did
not oscillate. Subsequently, θ was increased to 0.5 V at t = 2.5 ms, and the
neuron (u) exhibited oscillations. Again, at t = 5 ms, θ was set to 0.09 V for
the neuron to exhibit excitatory behavior. Since u had been excited before this
time, the neuron emitted one spike and then relaxed, as expected. Then at t

= 6 ms a sub-threshold input pulse (excitation) was applied, since the pulse
was under the neuron’s threshold it did not excite the neuron (no pulse was
generated). Finally, at t = 8 ms, the amplitude of the input pulse was increased
over the neuron’s threshold, it can be observed that the neuron generated a
pulse in response to the input. To further test the excitatory behavior of the
neuron, circuit the nullclines and trajectory for θ= 0.09 V were plotted (from
t=5 ms to 10 ms) in Fig. 4.7(b). When a sub-threshold pulse was applied (I1

in Fig. 4.7(a)), the trajectory of the neuron could not overcome the attraction
force of the fixed point and rapidly returned to its resting state. However, when
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Figure 4.6: Single neural oscillator circuit and circuit’s nullclines

the applied input pulse was over the neuron’s threshold (I2 in Fig. 4.7(b)), the
neuron could trace a full trajectory and then return to its resting state.

4.3 Simulations results

Circuit simulations of a 10× 10 circuit network were carried out . The param-
eter sets for the transistors were obtained from MOSIS 1.5-μm CMOS process.
Transistor sizes of the differential pairs (Fig. 4.6(a)) were fixed at L = 1.6
μm and W = 4 μm. The supply voltage was set at 3 V. The neurons were
locally connected by pass transistors instead of linear resistors. The connection
strength was controlled by the common gate voltage (Vg) of these transistors.
The values of the bias current Ib and the resistors R were set so that R×Ib = 1.
The capacitances C1 and C2 were set at 0.1 pF and 10 pF, respectively. Fig-
ure 4.8 shows the wave propagation of the circuit network with Vg = 0.4 V.
For the simulations the initial conditions of the first neuron (ui,j and vi,j for
i, j = 1, 1) were set to be in the active mode (u1,1 = 0.99 V and v1,1 = 0.18 V;
white dot in the figure), the rest of the neurons were set to be in the inactive
mode (ui,j = 0.01 V and vi,j = 0.18 V). In the numerical model, the inactive
neurons located next to the active neuron (white dot) were activated through
their connections with the active neuron, then returned to the inactive mode
as the neuron’s pulse completed its course following the pattern showed in the
figure.

Circuit simulations of a network of 100×100 neurons were conducted. For the
simulations, each neuron was excited with periodic sub-threshold current pulses
at node u (Fig. 4.6(a)). The simulation results are shown in Fig. 4.9. The
figure shows the correlation value as a function of the coupling strength, note
that with a low coupling strength the correlation values were almost 0; however,
as the coupling strength increased, the correlation value also increased. Since
the network size was smaller compare to that of the numerical simulations,
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Figure 4.7: Simulation results of the neural oscillator circuit.

the number of spiral set in the initial conditions was also smaller (about 7
spirals). Hence, the maximum correlation value between the input and the
output was around C = 0.32, which is less than half the value obtained by
numerical simulations. However, these results showed that an increase in the
correlation value could be realized by tuning the coupling strength, therefore it
can be assumed that as the size of the network and number of spirals increase,
the performance of the network can improve.

To further test the possibilities for implementing this kind of network, the
effects that device mismatches might have in the circuit network was studied.
For a single oscillator circuit, mismatches in the differential pairs (m1−m2 and
m3 − m4) can be negligible since they can be fabricated close to each other.
However, if the bias currents Ibs (see Fig. 4.6(a)) are implemented with tran-
sistors (i.e. mb1 and mb2); mismatches in these transistors might drastically
change the behavior of the network. Therefore, numerical Monte-Carlo simu-
lations by including threshold variations to the bias current Ib in the circuit
dynamics were conducted. To do this, the bias currents Ibs (Eqs. (4.8) and
(4.9)) was substituted by the sub-threshold current dynamics Id given by:
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Figure 4.8: Circuit simulations results showing the wave propagation of the
circuit with 10× 10 neurons.
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Figure 4.9: Circuit simulations results showing the correlation vs the coupling
strength with 100× 100 neurons.

Id = I0K exp
Vgs − Vth

ηVT
, (4.10)

where I0 is the zero bias current, K = W/L, and η is the sub-threshold
slope factor. The threshold voltage Vth is proportional to the deviation Vth ∝
Vtho + σV tho. Numerical simulations of a large-scale network of 1000 × 1000
neurons were conducted. Parameter VT was set at 26 mV, κ was set at 1.2, η

and I0 were calculated from SPICE simulations and found to be 1.5 and 4.79
pA, respectively. Initial conditions for the neurons in the inactive mode were
randomly set between 1.12 and 1.2, while neurons in the active and refractory
mode were set as previously described. For optimal operation of the network,
moderate coupling strength was used, the noise was set with around 40 spirals.
The mean value of the current Id was set to be approximately 100 nA and R was
set at 100 × 109Ω. Simulation results are shown in Fig. 4.10. As shown in the
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Figure 4.10: Numerical simulations of the circuit dynamic showing the cor-
relation vs the threshold variation of bias current transistor in a network of
1000× 1000 neurons.

figure, by introducing these new set of parameters the correlation value between
input and output increased when no variation was applied (σV tho=0) compared
to previous numerical simulations. Moreover, the network showed tolerance to
mismatches for variations up to σV tho=6 mV with a minimum correlation value
of C=0.7 for σV tho=6 mV.

From the differences observed on numerical simulations (Figs. 4.5 and 4.10),
it is understood that the performance of the network (Correlation value be-
tween input and output; C) depends on parameters set and initial conditions
(ic). Therefore, numerical simulations for different sets of ic were conducted.
Simulations results are shown in fig. 4.11). The error bars show represents
the variation of C for different sets of ic, squares are the mean value of Cs
obtained for every simulation set. It can be observed that with no threshold
variation (σVtho

= 0), C greatly depends on ic (C varied between 0.6 to 0.9).
However, when threshold variation are applied, C dependency on ic decreased
(for σVtho

=4 mV C increased to 0.9). When threshold variations are applied,
the bias current (Ib) of each neuron varied causing a shift on the behavior of
some neurons (i.e. neurons changed from excitatory to oscillatory behavior; see
fig. 4.12). Hence, oscillatory neurons became a constant noise source to the
network. A further increase of σVtho

, resulted on more neurons becoming oscil-
latory, in that case the output of the network was governed by the oscillatory
behavior of neurons and not by the input (Iin); therefore C decreased.

These results may be an important step toward the construction of robust
brain-inspired computer systems.
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Figure 4.11: Numerical simulations of the circuit dynamic showing the corre-
lation C vs the threshold variation σV tho for different initial conditions in a
network of 1000× 1000 neurons.
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4.4 Summary

A neuromorphic network exhibiting array-enhanced stochastic resonance was
proposed. The model consisted of N × N Wilson-Cowan neural oscillators.
Each oscillator was connected to its four neighbors to form a 2D grid. Wave
propagation characteristic of the network were used as internal noise sources.
Numerical simulations of a 1000 × 1000 network were performed and it was
shown that the correlation value between input and output can be increased by
tuning the coupling strength. A circuit network of 10×10 neurons was simulated
to demonstrate the wave propagation of the circuit network. To further test the
circuit network, numerical Monte-Carlo simulations were conducted; the results
showed that the network was tolerant to mismatches.



Chapter 5

Depressing synapses and

synchronization

Changes in our external environment are detected by sensory receptors cells,
which transduce the sensory stimulus into an electrical signal. This electrical
signal is then graded depending on the stimuli intensity. Synapses in vision, bal-
ance and hearing transmit this graded information with high fidelity [49]. The
computational potential of synapses is large because their basic signal transmis-
sion properties can be affected by the history of pre-synaptic and post-synaptic
firing in many different ways. This potential has important implications for
the diversity of signaling within neural circuits, suggesting that synapses have
a more active role in information processing [50].

Depressing synapses are a type synapses with the characteristic of reducing
synaptic strength. They have been shown to contribute in a wide range of
sensory tasks such as; contrast adaptation in vision [51], adaptation have been
observed also in the somatosensory cortex [52], suppression by masking stimuli
in primary visual cortex [53], habituation [54], sound localization [55] [56] and
sensory input selection [51], [57].

In addition, because depressing synapses produce transmission sequences
that are more regular as compare to excitatory synapses, they have been pro-
posed as a mechanism that removes redundant correlation so that transmission
sequences conveys information in a more efficient manner [58]. To encode in-
formation brought by sensory stimuli, dynamic response of a single neuron and
synchronization within an ensemble of active neurons play an essential role.
Some studies suggest that depressing synapses may have an effect on neurons
synchronization; in the auditory pathway, depressing synapses can provide an
effective way of detecting emergent synchrony activities [59], they can generate

76
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sustained oscillations of neural activity [60], and promote stability of cortical
activty [61].

To this end, a neural network model with depressing synapses that exhibits
synchronization even in a noisy environment was proposed by Fukai and Kane-
mura [62]. In this chapter a MOS circuits that ‘qualitatively’ imitate this net-
work model is designed. The circuit is constructed with silicon neurons and
depressing synapse circuits. Using a simulation program with integrated circuit
emphasis (SPICE), it was demonstrates that depressing synapses facilitate syn-
chronization among neuron circuits. Since a higher tolerance to external noises
could be achieved by introducing spike-timing dependent plasticity (STDP)
learning in the network model [62], an analog circuit for the STDP learning
is also proposed.

5.1 Network model

Figure 5.1 illustrates the network model. Four pyramidal neurons (triangles)
are shown. All of the outputs of the pyramidal neurons are sent to an interneu-
ron (circle in the figure) through excitatory synapses, whereas the interneuron
inhibits all of the pyramidal neurons through inhibitory synapses. Outputs of
the pyramidal neurons are randomly connected to pyramidal neurons through
depressing synapses (connection ratio). Since these synapses provide positive
feedback connections to pyramidal neurons [62], firing one pyramidal neuron
induces firing of other pyramidal neurons, which results in synchronous firing of
pyramidal neurons. The divergence due to the positive feedback is attenuated
by the interneuron that inhibits all of the pyramidal neurons.

The dynamics of a neural network model for precisely-timed synchronization
[62] are given by

τm
dVi

dt
= −(Vi − Vrest)− 1

NR

∑
j �=i

cijg
ee
ij (Vi − Vsyn)

−gei(Vi − Vcl) + Ei

τe
dEi

dt
= −Ei + E0 δ(t− tinp

i ), (i = 1, · · · , N)

τi
dV

dt
= −(Vi − Vrest)− gie(V − Vsyn)

where Vi and V represent the membrane potentials of the i-th pyramidal (integrate-
and-fire) neuron and an interneuron; Ei the postsynaptic potential of the i-th
pyramidal neuron; τm,e,i the time constants of pyramidal neurons, excitatory
synapses, and interneurons; N the number of pyramidal neurons; R the positive-
feedback connectivity between the pyramidal neurons as described above (the
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Figure 5.1: Neural network model for precisely-timed pulse synchronization

connection ratio); Vrest,syn,cl the resting potential of pyramidal neurons, de-
pressing synapse, and interneurons; ti the time at which the i-th input spike
is given; cij the binary representing the existence of feedback connections be-
tween the i-th and j-th pyramidal neurons; and gee,ei,ie the synaptic conduc-
tance between excitatory-to-excitatory, excitatory-to-inhibitory, and inhibitory-
to-excitatory neurons.

5.2 Circuit implementation

Using silicon neurons and depressing synapse circuits [63] [64] the network model
described in the preceding section was constructed and the circuit’s operational
principles is explained.

Figure 5.2 shows a diagram of a neuron circuit that imitates the basic op-
erations of an integrate-and-fire neuron (An integrate-and-fire neuron is one of
the earliest models of a neuron and is represented by the time derivative of
the law of capacitance). In addition, excitatory and inhibitory synapses are
constructed by pMOS and nMOS current mirrors that receive input pulses as
current. Delayed synaptic potentials (Vinh and Vexc) are generated by capacitors
C1 and C2. The excitatory postsynaptic current generated by Vexc charges C3

and consequently increases the membrane potential Ui, whereas the inhibitory
postsynaptic current generated by Vinh decreases it. An increase in the mem-
brane potential (Ui) in the soma circuit induces an increase in potential Vi by
charging C4. Thus, when the membrane potential exceeds a certain threshold,
the membrane node (Ui) is suddenly shunted by transistor M1. Although the
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shunted current increases exponentially with increasing membrane potential,
the current is then decreased when C4 is discharged by M4 with control voltage
VB. This sudden increase and decrease of shunting currents generate a pulse.
The output pulse is obtained by the current of transistor M2 and converted to
voltage by the diode-connected transistor M3. For the detailed dynamics and
mathematical explanations, see ref. [63].

Figure 5.3 shows a MOS circuit for a depressing synapse constructed with
a pMOS current mirror (M3, M4 and M5) and pMOS common-source amplifier
(M2 and M4). It should be noticed that M4 of the common-source amplifier is
shared by the current mirror with M5. When there is no input (current), voltage
Ve at node A is zero because of a leak current from transistor M2. Therefore,
transistor M1 is on. When there is an input current that increases Ve, M1 is
turned off. The current is therefore mirrored to output Iout through transistor
M1. Because there is a parasitic capacitance (Cdep) at node A, the increase in
Ve has a short time delay. Therefore, M1 is turned on for a short time, and
the output current is generated. When the input current becomes zero again,
M2 discharges the capacitance Cdep, and Ve returns to zero. Remarkably, the
mirror effect of the pMOS common-source amplifier, which amplifies the value
of additional parasitic capacitance between the drain and gate terminal of M4,
increases this discharging time. When the current pulse is given at a short
interval and subsequent pulses enter before Ve returns to zero, the amplitude of
the output pulses decreases when Ve increases. Because the current of transistor
M2 increases monotonically when VB increases, the time until Ve returns to
zero decreases. Thus by adjusting voltage VB, the duration of the depression
can be changed. Notice that, when VB is set t0 Vdd, the circuit behaves as a
nondepressing synapse because Ve is zero and M1 is always on.

Neural network hardware that is qualitatively equivalent to the network
model shown in Fig. 5.1 is illustrated in Fig. 5.4. To evaluate basic operations
of the network hardware, two neuron circuits for pyramidal neurons and one
neuron circuit for an interneuron were used. Outputs of the pyramidal neuron
circuits are sent to the interneuron circuit through nondepressing excitatory
synapses constructed with pMOS current mirrors, whereas the output of the
interneuron circuit is connected to nondepressing inhibitory synapses (nMOS
current mirrors) of the pyramidal neuron circuits. Outputs of the pyramidal
neuron circuits are also fed back to themselves through nondepressing or de-
pressing synapses, each of which is an excitatory connection. The network ac-
cepts external input pulses at terminals IN1 and IN2 and produces the output
pulses at terminals OUT1 and OUT2.
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5.3 Simulation results

A simulation program with integrated circuit emphasis (SPICE) was used to
evaluate the proposed circuit with MOSIS parameters (Vendor AMIS, feature
size: 1.5 μm). All the transistors dimensions (channel width and length) were
fixed at 2.3 and 1.5 μm, except for the channel length of M5 in depressing
synapse circuits. To compare the effects of depressing synapses on timing pre-
cision of synchronization among pyramidal neurons, the network with nonde-
pressing and depressing synapses for feedback connections between pyramidal
neurons was evaluated.

Figure 5.5 shows membrane potentials of a pyramidal neuron circuit in re-
sponse to short time burst input pulses (five pulses with intervals of 500 μs)
through nondepressing and depressing synapse circuits. Amplitudes of input
pulses, Vdd, Cdep, and VB were set at 10 nA, 5 V, 100 fF, and 350 mV. The
channel length of M5 was set at 3 μm for depressing synapses and 6.5 μm for
nondepressing synapses, which evoked on average the same excitatory post-
synaptic potential (EPSP), i.e., charges in membrane capacitances during the
burst input pulses were fixed to constant values regardless of the type of synapse
(nondepressing or depressing). This result ensures that the EPSP generated by
the depressing synapse circuit has a larger response at the burst onset than
that of the nondepressing synapse circuit. Figure 5.6 shows the change in am-
plitude of the output pulse against the input firing rate where VB was set at 0.1,
0.2, and 0.3 V. As the pulses frequency increases, the amplitude of the output
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NDS DS
average jitter (μs) 0.92 0.82

σ2 (μs) 0.36 0.21

Table 5.1: Comparison of results averaged timing jitters and their standard
deviations (σ2) between nondepressing (NDS) and depressing synapses (DS)

pulse decreased. By increasing VB, the cutoff frequency was successfully shifted
toward the higher frequency (toward the nondepressing operation).

Based on the extracted parameter results of nondepressing and depressing
synapse circuits, we evaluated the timing precision of synchronization in the
network. In the following simulations, the input pulses frequency was fixed at
2 kHz. Capacitance values of Cinter,1, Cinter,2, Cpyr,1, and Cpyr,2 were set at 1
pF, 100 fF, 300 fF, and 1 pF, whereas capacitors of nondepressing inhibitory
and excitatory synapses were removed in this simulation (Ci = Ce = 0). The
neuron’s bias voltages VB1 and VB2 were set at 650 and 560 mV. Figures 5.7 and
5.8 show output pulses train of pyramidal neuron circuits (V1 and V2 in Fig. 5.4)
when nondepressing and depressing synapses were used to connect pyramidal
neurons to each other. In both figures, each pyramidal neuron circuit tends to be
synchronized in the phase space. For a simple evaluation of the synchronization,
the following was calculated

S(t) = H(V1(t)− θ)×H(V2(t)− θ) (5.1)

where H(·) represents the step function and θ = 4.2 V. When V1 and V2 are fired
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Figure 5.7: Output pulses train of pyramidal neuron circuits with nondepressing
synapses

simultaneously at time t, S(t) becomes 1. Normalizing neuron circuit’s intrinsic
firing frequency at the ratio of 3 μm (depressing) to 6.5 μm (nondepressing),∑40 ms

t=0 S(t) was 6 for nondepressing whereas it was 17 for depressing synapses,
which quantitatively showed an improved synchronization between neuron cir-
cuits when depressing synapses were used. We also calculated the timing jitters
of output pulses of pyramidal neuron circuits. Table 5.1 shows a comparison of
the results of averaged timing jitters and their standard deviations (σ2) between
nondepressing and depressing synapses. We found that when depressing synapse
circuits were used, the average jitter was 0.1 μs better than that of nondepress-
ing synapse circuits. In addition, values of the standard deviation were 60 %
better than those of nondepressing synapse circuits. Therefore, we concluded
that depressing synapse circuits improve the timing precision of synchroniza-
tion. Remember that an EPSP generated by a depressing synapse circuit has
a larger response at a pulse onset than that of a nondepressing synapse circuit
(Fig. 5.5). When nondepressing synapses are used, several pulses are required
to evoke enough EPSPs to fire, whereas EPSPs evoked by depressing synapses
easily make a pyramidal neuron fire with a few pulses, e.g., even a single pulse is
sufficient if the threshold potential is set at a very low value. The resultant firing
gives rise to the subsequent firing of other pyramidal neurons, which results in
fast synchronization among all of the pyramidal neurons.

Synaptic depression is indeed able to detect partial synchrony in the burst
times [59]. With nondepressing synapses, the postsynaptic membrane poten-
tial follows the presynaptic mean firing rate and is able to be set continuously
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Figure 5.8: Output pulses train of pyramidal neuron circuits with depressing
synapses

below the threshold of a neuron. With depressing synapses, however, the par-
tially synchronized bursts push the postsynaptic membrane potential across the
threshold repeatedly during stimulus.

5.4 STDP learning circuit

According to the Hebb principle, synapses increase their efficacy if two connected
neurons are simultaneously fired. Simultaneous is to be defined by some time
window of coincidence. This window of coincidence has being a function of the
exact timing of the activity of the presynaptic and postsynaptic neuron, and this
phenomenon is called spike-timing-dependent plasticity (STDP). By introducing
STDP learning in the original network, Fukai and Kanemura demonstrated that
the network exhibited robust synchronization in a noisy environment [62]. In
this section, a novel analog circuit emulating the STDP learning is proposed.
The circuit consists of two basic circuits: a spike-timing detector and an analog
memory circuit.

To construct a spike-timing detector, a simple correlation neural network
was used [65]-[67]. Figure 5.9 shows a local correlation scheme used to account
for timing-sensitive responses of output neurons to input pulses (spike) train. A
primitive correlation neural network consists of two input neurons (P1 and P2),
a delay neuron (D), and a correlator (C), as shown in Fig. 5.9(a). The arrival
of pulses from P1 at the correlator is delayed by the delay neuron. The output
is a correlation value representing the product of delayed and undelayed signals
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Figure 5.9: (Primitive correlation neural network consisting of two input neurons
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from D and P2.

When an input pulse is given to P1 and then to P2 within the time ts, which
is longer than the delay time td, the delayed and undelayed signals from D and
P2 do not coincide at the correlator, as shown in Fig. 5.9(b). If an input pulse
is given to P1 and then to P2 in a time equal to the delay time, the delayed and
undelayed signals coincide at the correlator [Fig. 5.9(c)]. Namely, the output
signal of the correlator reaches its maximum at the point of coincidence. On
the other hand, if an input is given to P1 and then to P2 in a time shorter than
the delay time, the output signal monotonically decreases as the time decreases
[Fig. 5.9(d)]. Thus, the network can measure the degree of temporal differ-
ence by monotonically increasing output signals as the pulses (spike) intervals
between P1 and P2 decrease.

Figure 5.10 show a circuit diagram of spike-timing detectors implementing
the correlation neural networks. The circuit consists of a delay circuit (a source-
common amplifier and a capacitor), which we denote CMA in Fig. 5.10(b); a
pMOS unity-gain amplifier (UGA); and a current converter (diode-connected
MOS transistor DCM). A circuit shown in Figs. 5.10(a) and (b) detects sequen-
tial inputs of pre-to-post spikes. If one input pulse is given to terminal pre and
then the subsequent pulse input is given to terminal post (tpost−tpre ≡ Δt > 0),
Vpot increases because input of terminal pre is delayed by the source-common
amplifier, while the unity-gain amplifier that accepts the delayed voltage is
driven by the post input. Note that the source-common circuit amplifies not
only the pre voltage input but also the decay time due to the Miller effect. Since
the output of the unity-gain amplifier (Vpot) is sent to a diode-connected nMOS
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Figure 5.10: Spike-timing detectors

transistor, we can obtain a current output as a result of the current inputs
(terminals pre and post). Similarly, Figs. 5.10(c) and (d) show the inverted
circuit of Figs. 5.10(a) and (b) that detects sequential inputs of post-to-pre
spikes (Δt < 0).

An analog memory circuit for STDP learning is illustrated in Fig. 5.11.
The circuit consists of a pMOS differential pair, a storage capacitor (Cmemory),
and pMOS and nMOS current sources that receive the output of spike-timing
detectors (Vpot and Vdep) constructing pMOS and nMOS current mirrors. The
storage capacitor is discharged (or charged) by pre-to-post (or post-to-pre) input
pulses through Vpot (or Vdep), e.g., when Δt > 0, Vpot is increased and thus the
storage capacitor is discharged. Synaptic weight strength w between pre and
post neurons is defined by the ratio of input current Iin to output current Iout

and controlled by the difference between capacitor voltage Vmem and reference
voltage Vref . Initially Vmem is set to Vref by manual reset switching, i.e., Iout =
Iin/2 and thus w = 2. When all the transistors operate in their subthreshold
regions, weight strength w is given by

w =
Iin

Iout
=

1
f(Vmem − Vref)[

f(x) =
1

1 + exp(−κx/VT )

]
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Figure 5.12: Simulation results of spike-timing dependent plasticity circuit

where κ represents the effectiveness of the gate potential, and VT ≡ kT/q ≈ 26
mV at room temperature (k is Boltzmann’s constant, T the temperature, and
q the electron charge) [68], [69].

Figure 5.12 shows simulation results of the proposed STDP circuit. The
horizontal and vertical axes represent tpost − tpre (Δt) and capacitor voltage
Vmem. The power-supply and reference voltages were set at 5 and 2.5 V. The
memory capacitance value was set at 500 fF. As expected, the circuit mimicked
basic characteristics of STDP learning; however, the asymmetry characteristic
was observed. This is simply due to the unbalanced saturating properties of
pMOS and nMOS current sources in Fig. 5.11, which could be improved by
using relatively long channels for the current sources.
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5.5 Summary

A neural network circuit to demonstrate synchronization among neuron with
depressing synapse circuits was designed. The key to synchronizing neurons
precisely was introducing positive feedback to the neurons and using depress-
ing synapses instead of nondepressing (conventional) synapses for the feedback
connections. Consequently, precision was improved by 60% when depressing
synapse circuits were used instead of nondepressing synapses. Furthermore, a
novel synapse circuit that qualitatively mimics spike-timing dependent plastic-
ity (STDP) learning characteristics was designed. By circuit simulations, the
learning characteristics were demonstrated.



Chapter 6

Sensory segmentation

One of the most challenging problems in sensory information processing is the
analysis and understanding of natural scenes, i.e., images, sounds, etc. These
scenes can be decomposed into coherent “segments”. The segments correspond
to different components of the scene. Although this ability, generally known
as sensory segmentation, is performed by the brain with apparent ease, the
problem remains unsolved. Several models that perform segmentation have
been proposed [70]-[73], but they are often difficult to implement in practical
integrated circuits. A neural segmentation model called LEGION (Locally Ex-
citatory Globally Inhibitory Oscillator Networks) [73], can be implemented on
LSI circuits [74]. However, the LEGION model fails to work in the presence
of noise. Our model solves this problem by including spike-timing dependent
plasticity (STDP) learning with all-to-all connections of neurons.

In this chapter it is presented a simple neural segmentation model that is
suitable for analog CMOS circuits. The segmentation model is suitable for
applications such as figure-ground segmentation and the cocktail-party effect,
etc.

The model consists of mutually coupled (all-to-all) neural oscillators that
exhibit synchronous (or asynchronous) oscillations. All the neurons are coupled
with each other through positive or negative synaptic connections. Each neu-
ron accepts external inputs, e.g., sound inputs in the frequency domain, and
oscillates (or does not oscillate) when the input amplitude is higher (or lower)
than a given threshold value. The basic idea is to strengthen (or weaken) the
synaptic weights between synchronous (or asynchronous) neurons, which may
result in phase-domain segmentation. The synaptic weights are updated based
on symmetric STDP using Reichardt’s correlation neural network [65] which is
suitable for analog CMOS implementation.

90
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Figure 6.1: Network construction of segmentation model.

6.1 Model and basic operation

The segmentation model is illustrated in Fig. 6.1. The network has N neural
oscillators consisting of the Wilson-Cowan type activator and inhibitor pairs (ui

and vi) [20]. All the oscillators are coupled with each other through resistive
synaptic connections, as illustrated in the figure. The dynamics are defined by

τ
dui

dt
= −ui + fβ1(ui − vi) +

N∑
j �=i

W uu
ij uj , (6.1)

dvi

dt
= −vi + fβ2(ui − θi) +

N∑
j �=i

W uv
ij uj , (6.2)

where τ represents the time constant, N the number of oscillators, θi the external
input to the i-th oscillator. fβi

(x) represents the sigmoid function defined by
fβi(x) = [1 + tanh(βix)]/2, W uu

ij the connection strength between the i-th and
j-th activators and W uv

ij the strength between the i-th activator, and the j-th
inhibitor.

According to the stability analysis in [48], the i-th oscillator exhibits ex-
citable behaviors when θi < Θ where τ 	 1 and β1 = β2 (≡ β), where Θ is
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given by

Θ = u0 − 2
β

tanh−1(2v0 − 1), (6.3)

u0 ≡ 1−√
1− 4/β

2
,

v0 ≡ u0 − 2
β

tanh−1(2u0 − 1),

and exhibits oscillatory behaviors when θi ≥ Θ, if W uu
ij and W uv

ij for all i and j

are zero.

Suppose that neurons are oscillating (θi ≥ Θ for all i) with different initial
phases. The easiest way to segment these neurons is to connect the activators
belonging to the same (or different) group with positive (or negative) synaptic
weights. In practical hardware, however, the corresponding neuron devices have
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to be connected by special devices having both positive and negative resistive
properties, which prevents us from designing practical circuits. Therefore, it is
better to simply use positive synaptic weights between activators and inhibitors,
and do not use negative weights. When the weight between the i-th and j-th
activators (W uu

ij ) is positive and W uv
ij is zero, the i-th and j-th activators will be

synchronized. Contrarily, when the weight between the i-th activator and the
j-th inhibitor (W uv

ij ) is positive and W uu
ij is zero, the i-th and j-th activators

will exhibit asynchronous oscillation because the j-th inhibitor (synchronous to
the i-th activator) inhibits the j-th activator.

The synaptic weights (W uu
ij and W uv

ij ) are updated based on our assumption;
one neural segment is represented by synchronous neurons, and is asynchronous
with respect to neurons in the other segment. In other words, neurons should be
correlated (or anti-correlated) if they received synchronous (or asynchronous)
inputs. These correlation values can easily be calculated by using Reichardt’s
correlation neural network [65] which is suitable for analog circuit implemen-
tation [75]. The basic unit is illustrated in Fig. 6.2(a). It consists of a delay
neuron (D) and a correlator (C). A delay neuron produces blurred (delayed)
output Dout from spikes produced by activator u1. The dynamics are given by

d1
dDout

dt
= −Dout + u1, (6.4)

where d1 represents the time constant. The correlator accepts Dout and spikes
produced by activator u2 and outputs Cout = Dout × u2. The conceptual op-
eration is illustrated in Fig. 6.2(b). Note that Cout qualitatively represents
correlation values between activators u1 and u2 because Cout is decreased (or
increased) when Δt, inter-spike intervals of the activators, is increased (or de-
creased). Since this basic unit can calculate correlation values only for positive
Δt, two basic units are used, called an unitpair, as shown by thick lines in
Fig. 6.3(a). The output (U) is thus obtained for both positive and negative Δt

by summing the two Couts. Through temporal integration of U , impulse re-
sponses of this unit pair can be obtained. The sharpness is increases as d1 → 0.
Introducing two unit pairs with different time constants, i.e., d1 and d2 (
 d1),
one can obtain those two impulse responses (U and V ) simultaneously. The
impulse responses (U and V ) are plotted in Fig. 6.3(b) by a dashed and a dot-
ted line, respectively. The weighted subtraction (U −αV ) produces well-known
Mexican hat characteristics, as shown in Fig. 6.3(b) by a solid line. This sym-
metric characteristic is used for the weight updating as a spike-timing dependent
plasticity (STDP) in the oscillator network.

The learning model is shown in Fig. 6.4(a). The learning circuit is located
between two activators u1 and u2. The two outputs (U and V ) of the learning
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Figure 6.4: spike-timing dependent plasticity (STDP) learning Model.

circuit are given to interneuron W which performs subtraction U−αV . Accord-
ing to the above assumptions for neural segmentation, when U −αV is positive,
the weight between activators u1 and u2 (illustrated by a horizontal resistor
symbol in Fig. 6.4(a)) is increased because the activators should be correlated.
On the other hand, when U − αV is negative, the weight between activator u1

and inhibitor v2 (illustrated by a slant resistor symbol in Fig. 6.4(a)) is increased
because activators u1 and u2 should be anti-correlated. To this end, the output
of interneuron W is given to two additional interneurons (fuu and fuv). The
input-output characteristics of these interneurons are shown in Figs. 6.4(b).
Namely, fuu (or fuv) increases linearly when positive (or negative) U − αV

increases, but is zero when U − αV is negative (or positive). Those positive
outputs (fuu and fuv) are given to the weight circuit to modify the positive
resistances. The dynamics of the “positive” weight between activators ui and
uj is given by

dW uu
ij

dt
= −W uu

ij + fuu, (6.5)

and the “positive” weight between activator ui and inhibitor vj is

dW uv
ij

dt
= −W uv

ij + fuv. (6.6)

Numerical simulations with N = 6, τ = 0.1, β1 = 5, β2 = 10, d1 = 2,
d2 = 0.1 and α = 1.2 were carried out. Time courses of activators ui (i = 1 ∼ 6)
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Figure 6.5: Numerical simulation results.

are shown in Fig. 6.5. Initially, the external inputs θi (i = 1 ∼ 6) were zero
(< Θ), but θi for i = 1 ∼ 3 and i = 4 ∼ 6 were increased to 0.5 (> Θ) at t = 10
s and 20.9 s, respectively. It can be observed that u1∼3 and u4∼6 were gradually
desynchronized without breaking synchronization amongst neurons in the same
group, which indicated that segmentation of neurons based on the input timing
was successfully achieved.

In addition, numerical simulations to evaluate the “segmentation ability,”
which represents the number of survived segments after the learning were carried
out. The number of segments as a result of the network’s learning strongly
depends on the STDP characteristic as well as the input timing of neurons (Δt).
Let us remember that neurons that fire “simultaneously” should be correlated.
“Simultaneously” is to be defined by some “time windows of coincidence” that
here is called σSTDP. Thus, neurons that receive inputs within the time windows
should be correlated. Simulation results are shown in Fig. 6.6. The number of
neurons (N) was set to 50. The neurons received random inputs within time
tmax
in (maximum input timing). It can be observed that when σSTDP was 1 and

neurons received their inputs within time 2, the number of segments was about
2. The contrary was observed when σSTDP was 0.1 and tmax

in was 10, where the
number of segments was about 35.
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Figure 6.6: simulation results showing segmentation ability of the network
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6.2 Circuit implementation

The construction of a single neural oscillator is illustrated in Fig. 6.7. The
oscillator consists of two differential pairs (m3-m4 and m8-m9), two current
mirrors (m1-m2 and m6-m7), bias transistors (m5 and m10); and two additional
capacitors (C1 and C2). To explain the basic operation of the neural oscillator,
let us suppose that Wuu and Wuv in Eqs. (6.1) and (6.2) are zero. Now in Eq.
(6.1), when u is larger than v (u > v) u tends to increase and approach to 1
(vdd), on the contrary, when u is lower than v (u < v) u tends to decrease and
approach to 0 (gnd). The same analysis can be apply to Eq. (6.2). When u is
larger than θ (u > θ) v tends to increase approaching to (vdd), and, when u is
lower than θ (u < θ) v tends to decrease and approaching to (gnd).

The simulated nullclines of a single neuron circuit for different θs (0.5 V
and 2.5 V) and trajectories for θ = 2.5 V with C1 = 10 pF and Vref = 2 V
are shown in Fig. 6.8. Transient simulation results of the neuron circuit are
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Figure 6.8: Nullclines and trajectory for θ = 2.5 V obtained from circuit simu-
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Figure 6.9: Simulation results of neural oscillator.

shown in Fig. 6.9. The parameter used for the transistors were obtained from
MOSIS AMIS 1.5-μm CMOS process. All transistor sizes were fixed at L = 1.6
μm and W = 4 μm, the capacitors (C1 and C2) were set at 0.1 pF, and the
differential amplifier’s Vref was set at 0.7 V, and the supply voltage was set at
5 V. Time courses of the activator unit (u) and (v) are shown. Initially, θ was
set at 0.5 V (in relaxing state), and neither u nor v oscillated, instead u they
are in equilibrium. Then θ was increased to 2.5 V at t = 5 μs, and both u and
v exhibited oscillations with small phase difference between them. Again, θ was
set at 0.5 V at t = 10 μs and u relaxed, and v to a high value (around Vdd) and
decreases with time until it reach equilibrium, as expected.

A circuit implementing Reichardt’s basic unit shown in Fig. 6.2(a) is shown
in Fig. 6.10. Bias current I1 drives m6. Transistor m5 is thus biased to gener-
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ate I1 because m5 and m6 share the gates. When m3 is turned on (or off) by
applying Vdd (or 0) to u1, I1 is (or is not) copied to m1. Transistors m1 and
m2 form a current mirror, whereas m2 and m4 form a pMOS source-common
amplifier whose gain is increased as Vb1 → 0. Since the parasitic capacitance
between the source and drain of m2 is significantly amplified by this amplifier,
temporal changes of u1 are blurred on the amplifier’s output (Dout). Therefore
this “delayer” acts as a delay neuron in Fig. 6.2(a). A correlator circuit consists
of three differential amplifiers (m12-m13, m14-m15 and m16-m17), a pMOS cur-
rent mirror (m19-m20), a bias transistor (m18) and a bias current source (I2).
In this circuit, m12, m14 and m17 are floating gate transistors. They reduce
voltages of Dout and u2 to Dout/10 and u2/10 because the input gate sizes were
designed to ’capacitively’ split the input voltages with the ratio of 1:10. The
output current of differential pair m14-m15 is:

Iout = I2f(Dout/10)f(u2/10), (6.7)

where f(x) is the sigmoid function given by f(x) = 1/(1 + e−x). Current Iout

is regulated by the bias transistor m18. The result is copied to m20 through
current mirror m19-m20. This operation corresponds to that of a correlator in
Fig. 6.2(a).

Circuit simulations of the above circuits were conducted. The parameter
sets used for the transistors were obtained from MOSIS AMIS 1.5-μm CMOS
process. Transistor sizes of all nMOS and pMOS m9, m10 and m18 were fixed
at L = 1.6 μm and W = 4 μm pMOS transistors m1, m2, m19 and m20 were
fixed at L = 16 μm and W = 4 μm. The supply voltage was set at 5 V.

Simulation results of the STDP circuits are shown in Fig. 6.11. Parameters
Vb1, Vb2 and Vb3 were set at 0.41 V, 0.7 V and 4.1 V, respectively. The value
of Vb1 was chosen so that the delayer makes a reasonable delay. Horizontal
axes (Δt) in Fig. 6.11 represent time intervals of input current pulses (spikes).
Voltage pulses (amplitude: 5 V, pulse width: 10 ms) were applied as u1 and
u2 in Fig. 6.10. Capacitance Cout was integrated during the simulation and the
normalized values were plotted [(a) in Fig. 6.11]. Then the value of Vb1 was
changed to 0.37 V. The lowered Vb1 reduced the drain current of m4 and made
the delay larger. Again, Cout was integrated and normalized. The result is
plotted [(b) in Fig. 6.11]. By subtracting (b) from tripled (a), it was obtained
the STDP learning characteristic (c) in Fig. 6.11.

Simulations for testing the synaptic weights of two coupled neural oscillators
were made. Figure 6.12(a) shows the two oscillators with all the synaptic con-
nections. The oscillation of neurons u1 and u2 without applying any connection
between them (Vgs=0 V for Wuu and Wuv) are shown in Fig. 6.12(b) where
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Figure 6.10: spike-timing dependent plasticity circuit.

the neurons oscillated independently. nMOS transistors with L = 1.6 μm and
W = 4 μm were used as synaptic weight Wuu and Wuv, Fig. 6.12(a) shows the
excitatory connection Wuu between neurons u1 and u2, and inhibitory connec-
tions Wuv between neurons u1,2 and v2,1. The oscillations of neurons u1 and
u2 when applying an excitation through Wuu (the gate voltage of Wuu was set
at 1 V and 0 V for Wuv) are shown in Fig. 6.13(a), in this case both neurons
synchronized. On the contrary, when applying an inhibition through Wuv (the
gate voltage of Wuv was set at 0.6 V and 0 V for Wuu) the neurons oscillated
asynchronously as shown in Fig. 6.13(b).

A basic circuit implementing the interneurons (W , fuu and fuv) is shown in
Fig. 6.14. The circuit consists only of current mirrors. Input current U (from
Reichardt’s circuit; correlation circuit) is copied to m3 by current mirror m1-m3,
and is copied to m8 by current mirrors m1-m2 and m7-m8. At the same time,
input current V is copied to m6 by current mirror m4-m6, and is copied to m12

by current mirrors m4-m5 and m11-m12. Recall that we need the subtraction of
U − αV to produce the Mexican-hat characteristic. Therefore, the weight (α)
were set as α ≡ W5/L5 · L4/W4 = W6/L6 · L4/W4, where Wi and Li represent
the channel width and length of transistor mi , respectively. So, when current U

is higher than current αV , current fuu is outputted by current mirror m13-m14.
Otherwise, current fuv is outputted by current mirror m11-m12.

Circuit simulations for the interneuron circuit were carried out. Transistors
sizes (W/L) were 4 μm/1.6 μm for m1-m4, 10 μm/1.6 μm for m5 and m6, 4.5
μm/16 μm for m8 and m12, 3.5 μm/16 μm for m13, and 4 μm/16 μm for the
rest transistors. The supply voltage was set to 5 V. Input current V was set to
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100 nA, and input current U varied from 0 to 200 nA. The simulation results
are shown in Fig. 6.15. When U + ΔI < V where ΔI ≈ 20 nA, output current
fuv flowed and fuu was 0. When U − V < ΔI, both fuu and fuv were 0. When
hen U −ΔI > V , fuu flowed while fuv remained at 0.

Next, circuit simulations of the circuit network with N = 6 were conducted.
Transistor sizes (W/L) for the Recichardt’s basic circuit (see Fig. 6.10) were 4
μm/1.6 μm for nMOS transistors and m20, and 4 μm/16 μm for the rest of the
transistors. Voltages Vb2 and Vb3 were set to 550 mV and 4.08 V respectively,
while Vb1 was set to 510 mV for delay τd1, and was set to 430 mV for delay
τd2. With these settings, it was obtained positive W (U − αV ) for |Δt| ≤ 1
μs, and obtained negative W for |Δt| > 1 μs. In other words, when |Δt| ≤ 1
μs, neurons should be correlated, otherwise, they should be anti-correlated, as
explained before.
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The normalized time courses of uis (i = 1 ∼ 6) are shown in Figs. 6.16(a)
and (b). As shown in Fig. 6.16(a), at t = 0, external inputs θi (i = 1 ∼ 6)
were 2.5 V, which is equivalent to Δt=0. It can be observed that all neurons
were gradually synchronized. On the contrary, Fig. 6.16(b) shows that at t = 0
external inputs θ1,2,3 were set to 2.5 V, and inputs θ4,5,6 were set to 0. Then, at
t = 3 μs θ4,5,6 were set to 2.5 V, which is equivalent to Δt = 3 μs. Observed that
u1,2,3 and u4,5,6 were desynchronized without breaking synchronization among
neurons in the same group that were gradually synchronized. This indicated that
segmentation of neurons based on the input timing was successfully achieved.

To consider the noise tolerance of the network, Monte-Carlo simulations were
conducted in a circuit network with N = 3. The parameter Vth (threshold volt-
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Figure 6.16: circuit simulation results for a) inter-spike interval Δt = 0, and b)
Δt = 3 μs.

age) of all transistors was varied using Gaussian noises with standard deviation
σVT. When t = 0, external inputs to neurons (θ1, θ2, θ3) were set to (2.5,0,0)V.
Then, at t = 1 μs, (θ1, θ2, θ3) were set to (2.5,2.5,0)V, whereas they were set to
(2.5,2.5,2.5)V at t = 2.4 μs. In other words, neurons u1 and u2 should be syn-
chronous with each other, and they should be asynchronous with u3 because of
Δt=1.4 μs. To evaluate the performance of the network, the correlation values
Cij between neurons ui and uj were calculated, given by

Cij =
〈uiuj〉 − 〈ui〉〈uj〉√〈u2

i 〉 − 〈ui〉2
√
〈u2

j 〉 − 〈uj〉2
. (6.8)

Correlation values C12 and C13 were calculated to evaluate the synchronic-
ity between segments. Figures 6.17 and 6.18 show the simulation results. As
observed in the figures, when σVT <10 mV neurons u1 and u2 were correlated,
while the correlation value (C13) between neurons u1 and u3 was low, i.e., they
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Figure 6.17: correlation values between neurons u1 and u2 for different σVT.
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Figure 6.18: correlation values between neurons u1 and u3 for different σVT.

were anti-correlated. Due to imperfections of the CMOS fabrication process, de-
vice parameters, e.g., threshold voltage, etc., suffer large variations [76]. These
variations among transistors cause a significant change in general analog cir-
cuits. Nevertheless, the results obtained in Figs. 6.17 and 6.18 showed that
our network successfully segmented neurons for σVTs lower than 10 mV, which
indicated that the network is tolerant to threshold mismatch among transistors.

6.3 Summary

A neural segmentation model that is suitable for circuit implementation was pro-
posed. In order to facilitate the implementation of the model, instead of employ-
ing negative connections required for anti-correlated oscillation among different
segments, positive connections between activators and inhibitors among differ-
ent neuron units were used. The segmentation ability of the network through
numerical simulations was evaluated. The operation of the circuit network us-
ing six neurons was demonstrated. Finally, the effect of threshold mismatches
among transistors in the network with three oscillators was explored, the results
showed that the network was tolerant to device mismatches.



Chapter 7

Storage of temporal

sequences

The brain has an ability to process information whose content changes over
time. Therefore, it is necessary that systems, whether natural or artificial, have
the ability to process information whose content depends on temporal order
of events. Studies on neuroimaging have provided evidence that the prefrontal
cortex of the brain is involved in temporal sequencing [77]. Furthermore, studies
on the olfactory bulb have shown that information in biological networks takes
the form of space-time neural activity patterns [78] [79].

Patterns whose content depends on time are commonly called temporal se-
quence learning. The processing of temporal sequences has been a long standing
problem in artificial neural networks. To process such kind of sequences, a short-
term memory is needed to extract and store the temporally ordered sequences,
and another mechanism to retrieve them is also needed. Neural networks for
processing temporal sequences are usually based on multilayer perceptron or on
the Hopfield models [80]. In [81], a network for processing temporal sequences
has been proposed and applied to robotics. Making use of the Hebbian rule,
the model is able to learn and recall multiple trajectories with the help of time
varying information. In addition, spatio-temporal sequences processing have
been employed in neuromorphic VLSIs to mimic the early visual processing [82]
and an associative memory functions [83].

This chapter, focuses on the implementation of such kind of temporal-coding
neural networks with analog metal-oxide-semiconductor (MOS) devices. In [84],
Fukai proposed a model for the storage of temporal sequences. In the model,
the Walsh series expansion [85] was utilized to represent the input signal by
linear superposition of rectangular periodic functions with different fundamen-

104
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tal frequencies generated by an oscillatory subsystem. Often, the developments
of mathematical models for simulating large-scale neural networks are suffering
from problems of computer load (simulation time). This is avoided with the em-
ployment of analog MOS circuits permitting real-time emulation of large-scale
networks, because they are designed so that the circuit dynamics correspond to
the equation in the mathematical model. Therefore, based on Fukai’s model we
propose a modified neural model that is suitable for implementation with analog
MOS circuits, and is capable of learning and recalling temporal sequences. The
model consists of neural oscillators which are coupled to a common output cell
through positive or negative synaptic connections. The weights of the synaptic
connections are strengthened (or weakened) when the output of oscillatory cells
overlap (or do not overlap) with the input sequence.

7.1 Model

Fukai proposed a model for the storage of temporal sequences in [84]. The main
purpose of this model is learning and recalling the temporal input stimuli. The
model consists of an input unit which gives a trigger signal to the oscillatory
subsystem. The oscillatory subsystem has N oscillatory subunits and an array
of modifier cells. Each of the oscillatory subunits consists of a pair of excitatory
and inhibitory neural cells based on the Wilson-Cowan system [21], and gen-
erates oscillatory activity with various rhythms and phases. These oscillatory
cells are connected through synaptic connections to an array of modifier cells
which transforms the oscillatory activity into rectangular patterns, and controls
their rhythms and phases. The outputs of the modifier cells are connected to
an output cell which is trained independently of the activity of modifier cells,
through synaptic connections between the output cell and the modifier cells.
The output cell sums up all the outputs of the modifier cells to recall the input
signal according to the Walsh function series [85].

Based on the Fukai’s model, a modified model for learning and recalling
temporal sequences that is suitable for implementation with MOS circuits is
proposed. The modified model is shown in Fig. 7.1. One of the characteristics
of Fukai’s model is the use of modifier cells. The modifier cells change the ac-
tivities of the oscillatory cells into rectangular patterns, i.e., the cells generate
square-wave oscillations. In addition, threshold values of the modifier cells are
modified for the purpose of improving the accuracy of the input-output approx-
imation after each learning cycle [84]. In the modified model, these modifier
cells were eliminated. Instead neural oscillators which exhibit periodic square-
wave oscillations are used. Therefore, the modification of thresholds in modifier
cells is not carried out, which results in reducing accuracy of the learning in
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Figure 7.1: Proposed temporal coding model.

our model. The function of the model is to learn (record) temporal input se-
quence I(t) (∈ 0, 1) of length T and to recall it as recorded sequence u(t). The
model consists of N neural oscillators whose outputs Qi(t) (∈ 0, 1; i = 1, ..., N)
are time-varying periodic square waves with different fundamental frequencies.
Each of the oscillators is connected to an output cell through synaptic connec-
tions whose weights are denoted by wi (i = 1, ..., N). The output cell calculates
the weighted sum of the oscillator’s outputs as

u(t) =
N∑

i=1

wiQi(t). (7.1)

Through cyclic learning processes, wis in Eq. (7.1) are updated at every cycle to
achieve u(t) → I(t). Notice that this expression, i.e., a weighted sum of square-
wave functions with various fundamental frequencies, corresponds to a form of
the Walsh series expansion [85] which is a mathematical method to approximate
a certain class of functions, like the Fourier series expansion.

Now, given a periodic input signal (I(t)) with period T and the output (u(t)),
the mean square error (E) between them is defined as:

E =
1

2T

∫ (j+1)T

jT

[I(t)− u(t)]2 dt (j = 0, 1, 2, · · · ), (7.2)

where j represents the learning cycle. To learn the input signal (I(t)) correctly,
we need to minimize this error. This is achieved by modifying the weights (wi)
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between the oscillators and the output cell according to the gradient descent
rule:

δwi = −η∂E/∂wi, (7.3)

where η represents a small positive constant indicating the learning rate. Sub-
stituting E in Eq. (7.2) into Eq. (7.3), we obtain

δwi =
η

T

∫ (j+1)T

jT

[I(t)− u(t)]Qi(t) dt. (7.4)

The weights are updated at the end of each learning cycle (t = (j + 1)T ) as

wnew
i = wold

i + δwi. (7.5)

The procedures above, i.e., numerical calculations of Eqs. (7.1), (7.4) and (7.5),
are repeated (j = 0, 1, · · · ) until the error between the input and the output
becomes small enough.

Because the model is meant for hardware implementation, it is necessary
to take physical time for updating the weights (Eq. (7.5)) and resetting the
integrated value in Eq. (7.4) before starting another learning cycle, although the
updating and resetting terms are assumed to be zero in Eqs. (7.4) and (7.5). In
practical hardware, a single learning cycle consists of the input sequence’s length
(T ), the updating and resetting terms, as shown in Fig. 7.2. Note that each
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oscillator’s starting phase must be the same at the beginning of each learning
cycle. For example, oscillators Q1 and Q2 in Fig. 7.2 have the same starting
phase at the beginning of each learning cycle. If the starting phases of Qis at
the j-th learning cycle are different from that of Qis at the (j + 1)-th cycle, the
update value at the end of the j-th cycle (δwi) has no meaning because the δwi

is calculated by phase activities of Qis in the j-th cycle, and thus is effective
only for decreasing errors with Qis in the (j + 1)-th cycle that has the same
starting phases as in the j-th cycle.

Numerical simulations were conducted to confirm the operation of the model.
In the simulation, output of the oscillatory units Qi(t) was defined by:

Qi(t) = H[sin(2πfit)] (7.6)

where fi represents the random frequency distributed between 1 and 10 using
white noise sources, and H(x) is the step function defined as:

H(x) =

⎧⎪⎨
⎪⎩

1 (x > 0)

0 (x < 0)
. (7.7)

The results are shown in Fig. 7.3 (N = 200, T = 1 and η = 0.01). After the
first learning (Fig. 7.3(a)), the input (I(t)) and the output sequences (u(t)) were



7.1. MODEL 109

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1  10  100

N=200

N=100 N=30

N=1

m
ea

n 
sq

ua
re

 e
rr

or
 E

learning cycle j

Figure 7.4: Time evolution of mean square errors.

0

1

λ/T=4

I(t)

T0

Poisson
spikes

time
t
1

t
2

Figure 7.5: Input sequence (I(t)) generated by Poisson spikes with λ = 4.

completely different, however, u(t) approached to I(t) as repeating the learning
(Figs. 7.3(b) for 10th and (c) for 100th learning).

Figure 7.4 shows time evolution of the mean square errors (E) of the pro-
posed network with N = 1, 30, 100 and 200. The errors were decreased as the
learning cycle (j) increased, as expected. Since the error values for N = 30, 100
and 200 approached to the same values (≈ 0.2), we may avoid implementing a
large number of oscillators and synaptic connections on hardware. The error in
our modified model being of ≈ 0.2 (N=100 with 100 learning cycles) was about
two times higher than that of the original model (≈ 0.1 with N=100 with 100
learning cycles; [84]). Despite this difference the modified model is applicable
in areas that do not require errorless learning, e.g., low-quality voice recording
(learning) for mobile products, etc.
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Furthermore, the storage capacity of the proposed network was evaluated by
defining pattern overlaps between the input and output sequences, as a function
of N and complexity of input sequences. To define the complexity (≡ λ), Poisson
spikes whose mean firing rate is represented by λ were used. Let us assume
binary input sequence I(t) with period T and I(0) = “0”. The expected number
of spikes within period T is thus λ/T . The value of the input sequence is flipped
and kept when a spike is generated, i.e., I(t) (t > 0) remains “0” if no spikes
were generated, whereas I(t) (t > t1) is flipped to “1‘’ when a spike is generated
at t = t1. When the subsequent spike is generated at t = t2, I(t) (t > t2) is
flipped to “0”. Figure 7.5 shows the examples with λ/T = 4. This process is
repeated while t ≤ T

The pattern overlap between the input (I(t)) and the output sequences (u(t))
is defined by

m ≡ 1
T

∫ T

0

2
(

I(t)− 1
2

)
× 2

[
H

(
u(t)− 1

2

)
− 1

2

]
dt, (7.8)

where I(t) is expanded to±1, and Boolean values of threshold evaluation (u(t) >

0.5) is also expanded to ±1.

Figure 7.6 shows the average of the pattern overlaps between 10 different sets
of input sequences and their respective outputs for different values of λ when
T = 1. Outputs u(t) were obtained after the 100th learning cycle. We observed
that the pattern overlap decreased as λ increased. As expected, sequences with
small iterations are easier to learn than complex sequences.
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7.2 Circuit implementation

First, Wilson-Cowan oscillators [21] were use to implement the oscillator circuits.
The dynamics are given by

dui

dt
= −ui + fβ(ui − vi), (7.9)

dvi

dt
= −vi + fβ(ui − θ), (7.10)

where ui and vi represent the system variables of the i-th oscillator, θ the
threshold and fβ(·) the sigmoid function with slope β. Figure 7.7 shows a MOS
circuit that implements the Wilson-Cowan oscillator. The circuit consists of an
operational transconductance amplifier (OTA) and a buffer circuit composed of
two standard inverters. When time constants of the Wilson-Cowan system are
very small, one can rewrite Eqs. (7.9) and (7.10) as

ui ≈ fβ(ui − vi), (7.11)

vi ≈ fβ(ui − θ). (7.12)

The OTA’s output voltage (Vo) is expressed by Vd · f(V1 − V2), while output
voltage of the buffer circuit (Vo2) is given by Vd · f(Vin − Vth), where f(·) rep-
resents a nominal Sigmoid-like function and Vth the threshold voltage of the
buffer circuit. Thus it was obtained

ui = Vd · f(ui − vi), (7.13)

vi = Vd · f(ui − Vth), (7.14)

by connecting the inputs and outputs to ui and vi as shown in Fig. 7.7 (V1 =
Vo = ui, V2 = vi, Vin = ui, Vo2 = vi), which corresponds to Eqs. (7.11) and
(7.12). Here vi was used to represent Qi as V Q

i . The oscillatory state (oscillating
or resting) can be controlled by changing the power supply voltage (Vd), which is
necessary for setting the same starting phases at the beginning of each learning
cycle, as explained in section 2.

Second, let us implement synaptic connections and an output cell in the
proposed model. Because the weights between the oscillatory units and the
output cell (wis) in our model take both positive and negative values, it is
important to consider how to represent positive and negative synaptic weights
on analog MOS circuits. Traditional circuits implement such bipolar weights
by resistors with voltage mode neurons having positive- and negative-gain unity
amplifiers. According to the sign of the weights, one of the amplifier must be
selected. Implementing negative-gain unity amplifiers and the selection circuit
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may occupy a large area on analog LSIs. Therefore a “current-mode circuits”
was designed, where positive and negative synaptic weights are represented by
“currents”.

Let us define a differential weight w ≡ wp−wm where both wp and wm take
positive values, and introduce weight voltages V p and V m that are proportional
to wp and wm, respectively. Through voltage-to-current converters (VIs), V p

and V m are also converted to currents Ip and Im, and then wired. This setup is
illustrated in Fig. 7.8(a). Now, the output current I is given by Ip−Im which is
proportional to w, and I can take both positive (Ip > Im) and negative currents
(Ip < Im). Based on this idea, we design a synapse circuit that connects the
oscillator circuits and an output cell circuit. Figure 7.8(b) shows the concept
of the i-th synapse circuit which calculates Eq. (7.1). Two ideal switches are
inserted on the output lines of VIs. Since both switches are turned on (or off)
when control voltage V Q

i (output of the i-th oscillator) is “1” (or “0”), the
output current is represented by (Ip

i − Im
i )Qi which is proportional to wiQi.

Figure 7.8(c) illustrates a concept of the output cell that sums up all the output
currents of the synapse circuits. Since (Ip

i − Im
i )Qi is represented by current,

output current Iu(t) flowing out from node A is

Iu(t) =
N∑

i=1

(Ip
i − Im

i )Qi(t), (7.15)

which is thus proportional to u(t) (output of the proposed model).

Figure 7.9 illustrates a MOS circuit for the i-th synaptic circuit model shown
in Fig. 7.8(b). The circuit consists of two pass transistors (m5 and m6) and
a transconductance amplifier (m1-m4 and m7-m12) that acts as a voltage-to-
current converter (VI in Fig. 7.8(b)) with limited linear range. The amplifier
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consists of a differential pair (m1, m2 and m3) and current mirrors (m7-m8,
m9-m10, m11-m12 and m3-m4). When V Q

i is logical “1”, current of transistor
m1 produced by differential voltage V p

i − V m
i is copied to Ip

i by current mirror
m9-m10. At the same time, current of transistor m2 is copied to Im

i by current
mirrors m7-m8 and m11-m12. The output current Ii is thus given by (Ip

i −
Im
i )Qi(t).

As explained in section 2, in order to learn the input sequences correctly, it
is necessary to minimize the error between the input and the output sequences
by updating the weights according to Eqs. (7.4) and (7.5). So the next step is
to implement Eq. (7.4). Since δwi takes positive and negative values, the same
‘differential’ strategy employed for the synapse circuit was used. Assume that
I(t) and u(t) are represented by currents Iin(t) and Iu(t), respectively, and the
currents are integrated by capacitors. Then it can rewritten Eq. (7.4) as

δwi ∼ V I
i − V u

i , (7.16)

V I
i ≡ 1

C

∫ (j+1)T

jT

Iin(t)Qi(t)dt, (7.17)

V u
i ≡ 1

C

∫ (j+1)T

jT

Iu(t)Qi(t)dt, (7.18)
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where C represents the capacitance. Currents Iin(t) and Iu(t) are separately
integrated by capacitors, and the integrated values are represented by voltages
V I

i and V u
i .

A MOS circuit that implements Eqs. (7.17) and (7.18), which here called
integrator circuit, is shown in Fig. 7.10. The circuit consists of two current
mirrors (m1-m7 and m2-m8), two pass transistors (m3 and m4), two capacitors
(Cs), and two transistors for reset operations (m5 and m6). When V Q

i is logical
“1”, Iin(t) and Iu(t) are copied to pass transistors m3 and m4, respectively,
by the current mirrors, and are integrated by the capacitors. As explained in
section 2, before starting each learning cycle, V I

i and V u
i , must be reset to 0 by

setting Vr to “1”. Remember that voltages Vin and Vu in Fig. 7.10 reflect the
temporal input (I(t)) and output sequences (u(t)) that will be used to represent
the simulation results in section 4.

Next, let us evaluate the difference between the integrated voltages V I
i and

V u
i to calculate Eq. (7.16). Assume that the differential voltage is nonlinearly

converted to current Iδ
i by transconductance amplifier. The characteristic is

illustrated in Fig. 7.11(a) (center). The transferred current is separated into
positive and negative parts. The positive (or negative) Iδ

i is copied to Iδp
i (or

Iδm
i ), whereas Iδp

i = 0 (or Iδm
i = 0) when Iδ

i < 0 (or Iδ
i > 0), as shown in

Fig. 7.11(a) right (or left).

A MOS circuit that produces Iδp
i and Iδm

i , which here called piecewise linear
(PWL) circuit, is shown in Fig. 7.11(b). The circuit consists of a differential
pair (m1 to m3) and current mirrors (m4 to m17). When the differential pair is
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operating in the subthreshold region, currents I1 and I2 are given by:

I1 = Iref
exp(κV I

i )
exp(κV I

i ) + exp(κV u
i )

, (7.19)

I2 = Iref
exp(κV u

i )
exp(κV I

i ) + exp(κV u
i )

. (7.20)

The resulting differential current (Iδ
i = I1−I2) is proportional to the hyperbolic

tangent of V I
i − V u

i . Currents I1 and I2 are copied to m7 and m9, respectively.
When I1 > I2 (or I1 < I2), current mirror m14-m15 copies (or does not copy)
I1−I2 to Iδp

i . This operation corresponds to Fig. 7.11(a) right. Simultaneously,
currents I1 and I2 are copied to m10 and m12. When I2 > I1 (or I2 < I1), cur-
rent mirror m16-m17 copies (or does not copy) I2−I1 to Iδm

i , which corresponds
to characteristics in Fig. 7.11(a) left.

As explained in section 2, at the end of each oscillatory cycle (T ), the weights
have to be updated according to Eq. (7.5). We have already separated δwi into
positive and negative parts, as shown in Fig. 7.11(a), and obtained two positive
currents Iδp

i and Iδm
i . Assume that the bipolar weights are separately stored in

capacitors, and are updated with the amount of Iδp
i and Iδm

i . Then Eq. (7.5)
can be rewritten as

V p
i (t + Δt) = V p

i (t) +
Δt

C
Iδp
i L, (7.21)

V m
i (t + Δt) = V m

i (t) +
Δt

C
Iδm
i L, (7.22)
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Figure 7.11: MOS circuits for calculating weight update values; (a) conceptual
characteristics and (b) piecewise linear (PWL) circuit.

where C represent the capacitance, Δt the time step of learning, L the normal-
ized binary value (≡ VL/Vdd) for controlling the weight update, V p

i and V m
i the

integrated (updated) weight values. When Δt → 0, we obtain the differential
forms

C
dV p

i

dt
= Iδp

i L, (7.23)

C
dV m

i

dt
= Iδm

i L. (7.24)

Figure 7.12(a) illustrates a MOS circuit that calculates Eqs. (7.23) and (7.24).
During the update cycle (VL is logical “1”), Iδp

i and Iδm
i are separately integrated

by capacitors C1 and C2, respectively, via pass transistors m1 and m2. Remem-
ber that the integrated values V p

i and V m
i represent the weight wi (∼ V p

i −V m
i ),

and they are fed back to the i-th synapse circuit shown in Fig. 7.9.

Figure 7.12(b) summarizes the circuit’s control voltages per single learning
cycle. Before starting each learning cycle, Vr is set to logical “1” to reset the
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weight update values δwi (V I
i = V u

i = 0). At the beginning of each learning
cycle, Vd of oscillator circuit shown in Fig. 7.7 is set to Vdd and V Q

i starts to
exhibit square-wave oscillations. At the end of oscillatory cycle, Vd is set to 0
(thus the oscillation stops) and in turn the weight update starts (VL = “1”).
When the update is finished, Vr is set to “1” again. This process is repeated
until the difference between the input and the output sequences becomes small
enough.

7.3 Simulation results

SPICE simulations were conducted for each circuit component in section 3. In
the simulations, we used TSMC 0.35-μm CMOS parameters. Figure 7.13 shows
the results of single oscillator circuit, integrator circuit and PWL circuit. In the
oscillator circuit, all the dimensions (W/L) of transistors were set to 2 μm /
0.24 μm, and Vref was set to 450 mV. The supply voltage Vd was 2.5 V (or 0).
We confirmed that i) the circuit oscillated when the supply voltage was given,
and ii) the starting phases at the beginning of learning cycle (at Vd = 0 → 2.5
V; i.e., t = 0.4 μs and 0.8 μs) were the same, as shown in Fig. 7.13(a).

Simulation results of the integrator circuit are shown in Fig. 7.13(b). All the
dimensions of transistors in the circuit were set to 0.36 μm / 0.24 μm. Input
currents Iin and Iu were set to 1 μA and 2 μA, respectively. Capacitance C

was set to 1 pF and the supply voltage Vdd was set to 2.5 V. Figure 7.13(b)
shows that independently of the control voltage V Q

i , integrated voltages V I
i and

V u
i were reset to 0 when the reset control voltage (Vr) was set to logical “1”

(t = 0 ∼ 0.25 μs). The integration started when Vr was set to “0” and V Q
i

was “1”, which resulted in the increase of V I
i and V u

i (t = 0.25 ∼ 0.5 μs).
Then the integration stopped and V I

i and V u
i were preserved when V Q

i was “0”
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(t = 0.5 ∼ 0.75 μs). Again, when Vr was set to “1”, the integrated voltages were
reset to zero (t = 0.75 ∼ 1 μs).

Figure 7.13(c) shows simulation results for a single PWL circuit. Transistor
dimensions were 7.2 μm / 0.24 μm for m7 and m10, 1.6 μm / 0.24 μm for m9

and m12, 0.72 μm / 0.24 μm for m14 and m17, and 0.36 μm / 0.24 μm for
the rest transistors. The supply voltage (Vdd), V u

i and Vref were set to 2.5 V,
1.25 V and 1 V, respectively. As shown in Fig. 7.13(c) we could obtain similar
characteristics as Figs. 7.11(a) left and right; i.e., when V I

i > V u
i , Iδp

i was
monotonically increased as V I

i increased, whereas Iδp
i was always zero when

V I
i < V u

i . On the other hand, when V I
i > V u

i , Iδm
i was always zero, while Iδm

i

was monotonically decreased as V I
i increased when V I

i < V u
i .

The learning operation of the entire circuit was confirmed for N = 20. The
fundamental frequencies (fi’s) of the oscillators were set by

fi ≈ 0.3i + 1.1(MHz), (7.25)

where i represents the neuron index, which results in a distribution between 1.4
MHz and 7.1 MHz. The learning cycle was set to 1 μs where T , the updating and
the resetting terms were set to 0.7 μs, 0.1 μs and 0.2 μs, respectively. The input
sequences (I(t)) were generated with current pulses of 0.1 μA in amplitude, and
λ/T was set to 4. Capacitances C1 and C2 in Fig. 7.12 were set to 1 pF and
the supply voltage Vdd was set to 2.5 V.

Figure 7.14(a) shows a timing chart for the single learning cycle. Time
evolution of i-th integrator outputs (V I

i and V u
i ) and that of the weight voltages

(V p
i and V m

i ) are shown in Figs. 7.14(b) and (c), respectively. We could observe
that V I

i and V u
i took almost the same values, i.e., errors between the input

and output sequences became zero, after approximately 20 learning cycles. The
weight voltages were successfully updated at the end of each learning cycles;
when V I

i > V u
i , the positive weight (V p

i ) was increased, whereas when V I
i < V u

i

the negative weight (V m
i ) was increased, until the two attained a stable value.

Time courses of temporal input voltage Vin (∼ I(t); see Fig. 7.10) and learned
output voltage Vu (∼ u(t)) are shown in Figs. 7.15 and 7.16. We could observe
that Vin and Vu were different at the beginning (Fig. 7.15), but became similar
after about 29 learning cycles (Fig. 7.16).

It is important to note that circuits in the model operate in sub-threshold
region. In order to ensure the sub-threshold operation of circuits, fundamental
frequencies of oscillators in the MHz range were used, (about 1 MHz to 10 MHz
for the upper bound frequency). However, it is possible to learn sequences with
lower frequency (kHz range) by changing the source current value (Iref = 100
pA to 10 nA; Fig. 7.7) of the oscillator circuit.
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Finally, the pattern overlaps in Eq. (7.8) between the input and output
sequences produced by the circuits was calculated for different sets of input
sequences (λ). The input sequences were generated with current pulses of 0.5
μA in amplitude. The oscillatory cycle (T ), updating and resetting terms were
set to the same values in the simulations of Figs. 7.14 to 7.16. The calculations
were carried out for 1 and 30 neuron networks. The fundamental frequencies
were set by Eq. (7.25), thus were distributed between 1.4 MHz and 10.1 MHz for
N=30. Figure 7.17 shows the averaged pattern overlap between 10 different sets
of the input sequences and their outputs. For comparison reasons, numerical
results of the network model in section 2 with the same number of neurons were
superimposed in the figure. The difference between the SPICE and numerical
results are caused by the limited linear ranges of synapse circuit’s VIs and PWL
circuits. This result shows that the circuit network of N = 30 can retrieve
input sequence of λ/T = 6/(0.7 μs) ≈ 8.6 × 106 (s−1) with the accuracy of
72% (m ≈ 0.72), which indicates that the circuit can learn and recall temporal
sequence of 4.3 MHz under our device setups.

7.4 Summary

A neural circuit for temporal coding was designed. The model consists of N

oscillatory units connected to an output cell through synaptic connections. To
facilitate the implementation of the model, current-mode circuits where the in-
put, output and the weight values were represented by currents were designed.
The operation of each component of the network was demonstrated through
circuit simulations. Moreover, the operations of the entire circuit with 20 neu-
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rons was confirmed. The storage ability was also evaluated. When N = 30,
the circuit can learn and recall binary temporal sequences with 6 iterations in
the learning cycle with the accuracy of 72% under physically plausible device
configurations.



Chapter 8

Conclusion

Biological organisms perform complex operations continuously and effortlessly.
These operations allow them to quickly determine the motor actions to take in
response to combinations of external stimuli and internal states. This thesis
focused on the studied and hardware implementation of such kind of biological
operations. In other words, it aims to implementing systems that mimic the
sensory information processing performed by biological organisms. This is a
small contribution, to reach the goal researchers in this area have in common,
the building of an artificial brain. To accomplish this, in this research a series
of circuits were proposed.

For implementation of circuits at the first stage of perception, a tempera-
ture receptor circuits was proposed. The receptor consists of a sub-threshold
CMOS circuit that changes its dynamic behavior, i.e., oscillatory or stationary
behaviors, at a given threshold temperature; where the threshold temperature,
can be set to a desired value by adjusting the external bias voltage (θ)

In addition, as it is well know noise is present at every level of the ner-
vous system, from the perception of sensory signals to the generation of motor
responses. It is though that neurons and neural networks may employ differ-
ent strategies that can exploit the properties of noise to improve the efficiency
of neural operations. Therefore, a neural network that use noise and coupling
(array-enhanced stochastic resonance) to improve signal detection was proposed.
In the network, each neuron is electrically coupled to its four neighbors to form
a 2D grid network. All neurons accept a common sub-threshold input, and no
external noise source is required as each neuron acts as a noise source to other
neurons.

Transmission of signals (stimuli) between is done by synapses. The com-
putational potential of synapses has important implications for the diversity
of signaling within neural circuits, suggesting that synapses have a more active
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role in information processing. One special type of synapse (Depressing synapse)
have been shown to contribute in a wide range of sensory tasks. Therefore, in
chapter 5 a depressing synapses circuit was implemented and employed in a
simple neural network model to demonstrate the effect of synaptic depression
on synchronization (which is believe to have a important role in the coding of
sensory information).

The remaining chapters shifted the focus to the cognitive processing area.
With the introduction of two models. A neural network model for sensory seg-
mentation. The model performs segmentation in temporal domain where the
learning is governed by symmetric spike-timing dependent plasticity (STDP).
This work concluded with the implementation of a model for learning and re-
calling the temporal stimuli. As, in neural systems to process information that
changes over time a short-term memory is needed. The model consisted of
neural oscillators which are coupled to a common output cell through positive
or negative synaptic connections. The basic idea is to learn input sequences,
by superposition of rectangular periodic activity (oscillators) with different fre-
quencies.

All circuits operation were analyzed theoretically through mathematical
models of its operation. Also, extensive numerical and circuit simulations were
conducted. And the operation of the circuits and networks were demonstrated.

The combination of such kind of simple circuit will allow the design of hard-
ware system that are capable of detecting, transforming, transferring, processing
and interpreting sensory stimuli. The possibility to built complex neuromorphic
systems which sense and interact with the environment will hopefully contribute
to advancements in both, basic research and commercial applications. This tech-
nology is likely to become instrumental for research on computational neuro-
science, and for practical applications that involve sensory signal processing,
in uncontrolled environments.
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